883 resultados para Error localization
Resumo:
This study examines the tactile localization of sound sources utilizing an earmold vibratory hearing aid.
Resumo:
This paper discusses a study done to test tactile errors of localization abilities, with and without a Tactaid VII communication aid.
Resumo:
El artículo 342 del Código Tributario, al hablar de los elementos constitutivos de los ilícitos tributarios, establece que es necesaria la presencia de dolo o culpa rechazando la responsabilidad objetiva, que si acepta para contravenciones o faltas reglamentarias, es decir la culpabilidad como elemento del delito tributario es reconocida, lo cual lleva a que el artículo 338 del Código Tributario, reconozca al error como una circunstancia que excluye la responsabilidad penal tributaria, pero no existe desarrollo sobre el contenido del precepto. Esta falta de explicación obliga a recurrir al desarrollo que se ha dado sobre el tema por otras ramas del derecho, así se analizan las explicaciones realizadas por el Derecho Constitucional y el Derecho Penal, siendo este último donde más desarrollo se ha dado sobre el tema, sin poder olvidar la importancia de los derechos fundamentales de la persona. La presente tesis busca aportar criterios que sean útiles y aplicables en el campo tributario, para lo cual se tratará los siguientes temas: Derecho Penal Administrativo, naturaleza de las infracciones tributarias: Derecho Penal aplicable al campo tributario, la culpabilidad en Tratados Internacionales sobre derechos humanos, principio de culpabilidad y sus elementos, error como eximente de responsabilidad, límites de la presencia del error y elusión tributaria.
Resumo:
Esta investigación estudia el rol del juez en el Estado constitucional de derechos y justicia en el Ecuador, el error inexcusable y el procesamiento disciplinario por error judicial inexcusable desde sus principios de legalidad y taxatividad, la etiología del error, el órgano competente y la independencia judicial. Presenta conclusiones y recomendaciones.
Resumo:
This paper presents the development of an indoor localization system using camera vision. The localization system has a capability to determine 2D coordinate (x, y) for a team of mobile robots, Miabot. The experimental results show that the system outperforms our existing sonar localizer both in accuracy and a precision.
Resumo:
Resumo:
Models of the dynamics of nitrogen in soil (soil-N) can be used to aid the fertilizer management of a crop. The predictions of soil-N models can be validated by comparison with observed data. Validation generally involves calculating non-spatial statistics of the observations and predictions, such as their means, their mean squared-difference, and their correlation. However, when the model predictions are spatially distributed across a landscape the model requires validation with spatial statistics. There are three reasons for this: (i) the model may be more or less successful at reproducing the variance of the observations at different spatial scales; (ii) the correlation of the predictions with the observations may be different at different spatial scales; (iii) the spatial pattern of model error may be informative. In this study we used a model, parameterized with spatially variable input information about the soil, to predict the mineral-N content of soil in an arable field, and compared the results with observed data. We validated the performance of the N model spatially with a linear mixed model of the observations and model predictions, estimated by residual maximum likelihood. This novel approach allowed us to describe the joint variation of the observations and predictions as: (i) independent random variation that occurred at a fine spatial scale; (ii) correlated random variation that occurred at a coarse spatial scale; (iii) systematic variation associated with a spatial trend. The linear mixed model revealed that, in general, the performance of the N model changed depending on the spatial scale of interest. At the scales associated with random variation, the N model underestimated the variance of the observations, and the predictions were correlated poorly with the observations. At the scale of the trend, the predictions and observations shared a common surface. The spatial pattern of the error of the N model suggested that the observations were affected by the local soil condition, but this was not accounted for by the N model. In summary, the N model would be well-suited to field-scale management of soil nitrogen, but suited poorly to management at finer spatial scales. This information was not apparent with a non-spatial validation. (c),2007 Elsevier B.V. All rights reserved.