931 resultados para Energy flow
Resumo:
[EN] In this work we propose a new variational model for the consistent estimation of motion fields. The aim of this work is to develop appropriate spatio-temporal coherence models. In this sense, we propose two main contributions: a nonlinear flow constancy assumption, similar in spirit to the nonlinear brightness constancy assumption, which conveniently relates flow fields at different time instants; and a nonlinear temporal regularization scheme, which complements the spatial regularization and can cope with piecewise continuous motion fields. These contributions pose a congruent variational model since all the energy terms, except the spatial regularization, are based on nonlinear warpings of the flow field. This model is more general than its spatial counterpart, provides more accurate solutions and preserves the continuity of optical flows in time. In the experimental results, we show that the method attains better results and, in particular, it considerably improves the accuracy in the presence of large displacements.
Resumo:
[EN] We present in this paper a variational approach to accurately estimate simultaneously the velocity field and its derivatives directly from PIV image sequences. Our method differs from other techniques that have been presented in the literature in the fact that the energy minimization used to estimate the particles motion depends on a second order Taylor development of the flow. In this way, we are not only able to compute the motion vector field, but we also obtain an accurate estimation of their derivatives. Hence, we avoid the use of numerical schemes to compute the derivatives from the estimated flow that usually yield to numerical amplification of the inherent uncertainty on the estimated flow. The performance of our approach is illustrated with the estimation of the motion vector field and the vorticity on both synthetic and real PIV datasets.
Resumo:
[EN] The aim of this work is to propose a model for computing the optical flow in a sequence of images. We introduce a new temporal regularizer that is suitable for large displacements. We propose to decouple the spatial and temporal regularizations to avoid an incongruous formulation. For the spatial regularization we use the Nagel-Enkelmann operator and a newly designed temporal regularization. Our model is based on an energy functional that yields a partial differential equation (PDE). This PDE is embedded into a multipyramidal strategy to recover large displacements. A gradient descent technique is applied at each scale to reach the minimum.
Resumo:
[EN] In this paper we show that a classic optical flow technique by Nagel and Enkelmann can be regarded as an early anisotropic diffusion method with a diffusion tensor. We introduce three improvements into the model formulation that avoid inconsistencies caused by centering the brightness term and the smoothness term in different images use a linear scale-space focusing strategy from coarse to fine scales for avoiding convergence to physically irrelevant local minima, and create an energy functional that is invariant under linear brightness changes. Applying a gradient descent method to the resulting energy functional leads to a system of diffusion-reaction equations. We prove that this system has a unique solution under realistic assumptions on the initial data, and we present an efficient linear implicit numerical scheme in detail. Our method creates flow fields with 100% density over the entire image domain, it is robust under a large range of parameter variations, and it can recover displacement fields that are far beyond the typical one-pixel limits which are characteristic for many differential methods for determining optical flow. We show that it performs better than the classic optical flow methods with 100% density that are evaluated by Barron et al. (1994). Our software is available from the Internet.
Resumo:
[EN] In this paper we present a new model for optical flow calculation using a variational formulation which preserves discontinuities of the flow much better than classical methods. We study the Euler-Lagrange equations asociated to the variational problem. In the case of quadratic energy, we show the existence and uniqueness of the corresponding evolution problem. Since our method avoid linearization in the optical flow constraint, it can recover large displacement in the scene. We avoid convergence to irrelevant local minima by embedding our method into a linear scale-space framework and using a focusing strategy from coarse to fine scales.
Resumo:
The research activity described in this thesis is focused mainly on the study of finite-element techniques applied to thermo-fluid dynamic problems of plant components and on the study of dynamic simulation techniques applied to integrated building design in order to enhance the energy performance of the building. The first part of this doctorate thesis is a broad dissertation on second law analysis of thermodynamic processes with the purpose of including the issue of the energy efficiency of buildings within a wider cultural context which is usually not considered by professionals in the energy sector. In particular, the first chapter includes, a rigorous scheme for the deduction of the expressions for molar exergy and molar flow exergy of pure chemical fuels. The study shows that molar exergy and molar flow exergy coincide when the temperature and pressure of the fuel are equal to those of the environment in which the combustion reaction takes place. A simple method to determine the Gibbs free energy for non-standard values of the temperature and pressure of the environment is then clarified. For hydrogen, carbon dioxide, and several hydrocarbons, the dependence of the molar exergy on the temperature and relative humidity of the environment is reported, together with an evaluation of molar exergy and molar flow exergy when the temperature and pressure of the fuel are different from those of the environment. As an application of second law analysis, a comparison of the thermodynamic efficiency of a condensing boiler and of a heat pump is also reported. The second chapter presents a study of borehole heat exchangers, that is, a polyethylene piping network buried in the soil which allows a ground-coupled heat pump to exchange heat with the ground. After a brief overview of low-enthalpy geothermal plants, an apparatus designed and assembled by the author to carry out thermal response tests is presented. Data obtained by means of in situ thermal response tests are reported and evaluated by means of a finite-element simulation method, implemented through the software package COMSOL Multyphysics. The simulation method allows the determination of the precise value of the effective thermal properties of the ground and of the grout, which are essential for the design of borehole heat exchangers. In addition to the study of a single plant component, namely the borehole heat exchanger, in the third chapter is presented a thorough process for the plant design of a zero carbon building complex. The plant is composed of: 1) a ground-coupled heat pump system for space heating and cooling, with electricity supplied by photovoltaic solar collectors; 2) air dehumidifiers; 3) thermal solar collectors to match 70% of domestic hot water energy use, and a wood pellet boiler for the remaining domestic hot water energy use and for exceptional winter peaks. This chapter includes the design methodology adopted: 1) dynamic simulation of the building complex with the software package TRNSYS for evaluating the energy requirements of the building complex; 2) ground-coupled heat pumps modelled by means of TRNSYS; and 3) evaluation of the total length of the borehole heat exchanger by an iterative method developed by the author. An economic feasibility and an exergy analysis of the proposed plant, compared with two other plants, are reported. The exergy analysis was performed by considering the embodied energy of the components of each plant and the exergy loss during the functioning of the plants.
Resumo:
The objective of this thesis was to improve the commercial CFD software Ansys Fluent to obtain a tool able to perform accurate simulations of flow boiling in the slug flow regime. The achievement of a reliable numerical framework allows a better understanding of the bubble and flow dynamics induced by the evaporation and makes possible the prediction of the wall heat transfer trends. In order to save computational time, the flow is modeled with an axisymmetrical formulation. Vapor and liquid phases are treated as incompressible and in laminar flow. By means of a single fluid approach, the flow equations are written as for a single phase flow, but discontinuities at the interface and interfacial effects need to be accounted for and discretized properly. Ansys Fluent provides a Volume Of Fluid technique to advect the interface and to map the discontinuous fluid properties throughout the flow domain. The interfacial effects are dominant in the boiling slug flow and the accuracy of their estimation is fundamental for the reliability of the solver. Self-implemented functions, developed ad-hoc, are introduced within the numerical code to compute the surface tension force and the rates of mass and energy exchange at the interface related to the evaporation. Several validation benchmarks assess the better performances of the improved software. Various adiabatic configurations are simulated in order to test the capability of the numerical framework in modeling actual flows and the comparison with experimental results is very positive. The simulation of a single evaporating bubble underlines the dominant effect on the global heat transfer rate of the local transient heat convection in the liquid after the bubble transit. The simulation of multiple evaporating bubbles flowing in sequence shows that their mutual influence can strongly enhance the heat transfer coefficient, up to twice the single phase flow value.
Resumo:
A fundamental gap in the current understanding of collapsed structures in the universe concerns the thermodynamical evolution of the ordinary, baryonic component. Unopposed radiative cooling of plasma would lead to the cooling catastrophe, a massive inflow of condensing gas toward the centre of galaxies, groups and clusters. The last generation of multiwavelength observations has radically changed our view on baryons, suggesting that the heating linked to the active galactic nucleus (AGN) may be the balancing counterpart of cooling. In this Thesis, I investigate the engine of the heating regulated by the central black hole. I argue that the mechanical feedback, based on massive subrelativistic outflows, is the key to solving the cooling flow problem, i.e. dramatically quenching the cooling rates for several billion years without destroying the cool-core structure. Using an upgraded version of the parallel 3D hydrodynamic code FLASH, I show that anisotropic AGN outflows can further reproduce fundamental observed features, such as buoyant bubbles, cocoon shocks, sonic ripples, metals dredge-up, and subsonic turbulence. The latter is an essential ingredient to drive nonlinear thermal instabilities, which cause cold gas condensation, a residual of the quenched cooling flow and, later, fuel for the AGN feedback engine. The self-regulated outflows are systematically tested on the scales of massive clusters, groups and isolated elliptical galaxies: in lighter less bound objects the feedback needs to be gentler and less efficient, in order to avoid drastic overheating. In this Thesis, I describe in depth the complex hydrodynamics, involving the coupling of the feedback energy to that of the surrounding hot medium. Finally, I present the merits and flaws of all the proposed models, with a critical eye toward observational concordance.
Resumo:
In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.
Resumo:
Biodiesel represents a possible substitute to the fossil fuels; for this reason a good comprehension of the kinetics involved is important. Due to the complexity of the biodiesel mixture a common practice is the use of surrogate molecules to study its reactivity. In this work are presented the experimental and computational results obtained for the oxidation and pyrolysis of methane and methyl formate conducted in a plug flow reactor. The work was divided into two parts: the first one was the setup assembly whilst, in the second one, was realized a comparison between the experimental and model results; these last was obtained using models available in literature. It was started studying the methane since, a validate model was available, in this way was possible to verify the reliability of the experimental results. After this first study the attention was focused on the methyl formate investigation. All the analysis were conducted at different temperatures, pressures and, for the oxidation, at different equivalence ratios. The results shown that, a good comprehension of the kinetics is reach but efforts are necessary to better evaluate kinetics parameters such as activation energy. The results even point out that the realized setup is adapt to study the oxidation and pyrolysis and, for this reason, it will be employed to study a longer chain esters with the aim to better understand the kinetic of the molecules that are part of the biodiesel mixture.
Resumo:
Thermal effects are rapidly gaining importance in nanometer heterogeneous integrated systems. Increased power density, coupled with spatio-temporal variability of chip workload, cause lateral and vertical temperature non-uniformities (variations) in the chip structure. The assumption of an uniform temperature for a large circuit leads to inaccurate determination of key design parameters. To improve design quality, we need precise estimation of temperature at detailed spatial resolution which is very computationally intensive. Consequently, thermal analysis of the designs needs to be done at multiple levels of granularity. To further investigate the flow of chip/package thermal analysis we exploit the Intel Single Chip Cloud Computer (SCC) and propose a methodology for calibration of SCC on-die temperature sensors. We also develop an infrastructure for online monitoring of SCC temperature sensor readings and SCC power consumption. Having the thermal simulation tool in hand, we propose MiMAPT, an approach for analyzing delay, power and temperature in digital integrated circuits. MiMAPT integrates seamlessly into industrial Front-end and Back-end chip design flows. It accounts for temperature non-uniformities and self-heating while performing analysis. Furthermore, we extend the temperature variation aware analysis of designs to 3D MPSoCs with Wide-I/O DRAM. We improve the DRAM refresh power by considering the lateral and vertical temperature variations in the 3D structure and adapting the per-DRAM-bank refresh period accordingly. We develop an advanced virtual platform which models the performance, power, and thermal behavior of a 3D-integrated MPSoC with Wide-I/O DRAMs in detail. Moving towards real-world multi-core heterogeneous SoC designs, a reconfigurable heterogeneous platform (ZYNQ) is exploited to further study the performance and energy efficiency of various CPU-accelerator data sharing methods in heterogeneous hardware architectures. A complete hardware accelerator featuring clusters of OpenRISC CPUs, with dynamic address remapping capability is built and verified on a real hardware.
Resumo:
Waste management represents an important issue in our society and Waste-to-Energy incineration plants have been playing a significant role in the last decades, showing an increased importance in Europe. One of the main issues posed by waste combustion is the generation of air contaminants. Particular concern is present about acid gases, mainly hydrogen chloride and sulfur oxides, due to their potential impact on the environment and on human health. Therefore, in the present study the main available technological options for flue gas treatment were analyzed, focusing on dry treatment systems, which are increasingly applied in Municipal Solid Wastes (MSW) incinerators. An operational model was proposed to describe and optimize acid gas removal process. It was applied to an existing MSW incineration plant, where acid gases are neutralized in a two-stage dry treatment system. This process is based on the injection of powdered calcium hydroxide and sodium bicarbonate in reactors followed by fabric filters. HCl and SO2 conversions were expressed as a function of reactants flow rates, calculating model parameters from literature and plant data. The implementation in a software for process simulation allowed the identification of optimal operating conditions, taking into account the reactant feed rates, the amount of solid products and the recycle of the sorbent. Alternative configurations of the reference plant were also assessed. The applicability of the operational model was extended developing also a fundamental approach to the issue. A predictive model was developed, describing mass transfer and kinetic phenomena governing the acid gas neutralization with solid sorbents. The rate controlling steps were identified through the reproduction of literature data, allowing the description of acid gas removal in the case study analyzed. A laboratory device was also designed and started up to assess the required model parameters.
Resumo:
This thesis work has been carried out at Clarkson University in Potsdam NY, USA and involved the design of a low elongation wing, consisting of parts made by polylactide (PLA) using the fused deposition model (FDM) technology of Rapid Prototyping, then assembled together in a thin aluminum spar. The aim of the research is to evaluate the feasibility of collecting electrical energy by converting mechanical energy from the vibration of the wing flutter. With this aim piezoelectric stripes were glued in the inner part of the wing, as well as on the aluminum spar, as monomorphic configuration. During the phases of the project, particular attention was given to the geometry and the materials used, in order to trigger the flutter for low flow velocity. The CAD software SolidWorks® was used for the design of the wing and then the drawings were sent to the Clarkson machine shop in order to to produce the parts required by the wing assembly. FEM simulations were performed, using software MSC NASTRAN/PATRAN®, to evaluate the stiffness of the whole wing as well as the natural vibration modes of the structure. These data, in a first approximation, were used to predict the flutter speed. Finally, experimental tests in the Clarkson wind tunnel facility were carried out in order to validate the results obtained from FEM analysis. The power collected by the piezoelectrics under flutter condition was addressed by tuning the resistors downstream the electronic circuit of the piezoelectrics.
Resumo:
OBJECTIVE: Adequacy of organ perfusion depends on sufficient oxygen supply in relation to the metabolic needs. The aim of this study was to evaluate the relationship between gradients of free energy change, and the more commonly used parameter for the evaluation of the adequacy of organ perfusion, such as oxygen-extraction in patients undergoing valve replacement surgery using normothermic cardiopulmonary bypass (CPB). METHODS: In 43 cardiac patients, arterial, mixed venous, and hepato-venous blood samples were taken synchronously after induction of anaesthesia (preCPB), during CPB, and 2 and 7 h after admission to the intensive care unit (ICU+2, ICU+7). Blood gas analysis, cardiac output, and hepato-splanchnic blood flow were measured. Free energy change gradients between mixed venous and arterial (-deltadeltaG(v - a)) and hepato-venous and arterial (-deltadeltaG(hv - a)) compartments were calculated. MEASUREMENTS AND RESULTS: Cardiac index (CI) increased from 1.9 (0.7) to 2.8 (1.3) L/min/m (median, inter-quartile range) (p = 0.001), and hepato-splanchnic blood flow index (HBFI) from 0.6 (0.22) to 0.8 (0.53) L/min/m (p = 0.001). Despite increasing flow, systemic oxygen extraction increased after CPB from 24 (10)% to 35 (10)% at ICU+2 (p = 0.002), and splanchnic oxygen extraction increased during CPB from 37 (19)% to 52 (14)% (p = 0.001), and remained high thereafter. After CPB, high splanchnic and systemic gradients of free energy change gradients were associated with high splanchnic and systemic oxygen extraction, respectively (p = 0.001, 0.033, respectively). CONCLUSION: Gradients of free energy change may be helpful in characterising adequacy of perfusion in cardiac surgery patients independently from measurements or calculations of data from oxygen transport.