874 resultados para Energia elétrica - custos
Resumo:
One of the more promising possibilities for future “green” electrical energy generation is the protonic ceramic fuel cell (PCFC). PCFCs offer a low-pollution technology to generate electricity electrochemically with high efficiency. Reducing the operating temperature of solid oxide fuel cells (SOFCs) to the 500-700°C range is desirable to reduce fabrication costs and improve overall longevity. This aim can be achieved by using protonic ceramic fuel cells (PCFCs) due to their higher electrolyte conductivity at these temperatures than traditional ceramic oxide-ion conducting membranes. This thesis deals with the state of the art Ni-BaZr0.85Y0.15O3-δ cermet anodes for PCFCs. The study of PCFCs is in its initial stage and currently only a few methods have been developed to prepare suitable anodes via solid state mechanical mixing of the relevant oxides or by combustion routes using nitrate precursors. This thesis aims to highlight the disadvantages of these traditional methods of anode preparation and to, instead, offer a novel, efficient and low cost nitrate free combustion route to prepare Ni-BaZr0.85Y0.15O3-δ cermet anodes for PCFCs. A wide range of techniques mainly X-ray diffraction (XRD), scanning electron microscopy (SEM), environmental scanning electron microscopy, (ESEM) and electrochemical impedance spectroscopy (EIS) were employed in the cermet anode study. The work also offers a fundamental examination of the effect of porosity, redox cycling behaviour, involvement of proton conducting oxide phase in PCFC cermet anodes and finally progresses to study the electrochemical performance of a state of the art anode supported PCFC. The polarisation behaviour of anodes has been assessed as a function of temperature (T), water vapour (pH2O), hydrogen partial pressures (pH2) and phase purity for electrodes of comparable microstructure. The impedance spectra generally show two arcs at high frequency R2 and low frequency R3 at 600 °C, which correspond to the electrode polarisation resistance. Work shows that the R2 and R3 terms correspond to proton transport and dissociative H2 adsorption on electrode surface, respectively. The polarization resistance of the cermet anode (Rp) was shown to be significantly affected by porosity, with the PCFC cermet anode with the lowest porosity exhibiting the lowest Rp under standard operating conditions. This result highlights that porogens are not required for peak performance in PCFC anodes, a result contrary to that of their oxide-ion conducting anode counterparts. In-situ redox cycling studies demonstrate that polarisation behaviour was drastically impaired by redox cycling. In-situ measurements using an environmental scanning electron microscopy (ESEM) reveal that degradation proceeds due to volume expansion of the Ni-phase during the re-oxidation stage of redox cycling.The anode supported thin BCZY44 based protonic ceramic fuel cell, formed using a peak performing Ni-BaZr0.85Y0.15O3-δ cermet anode with no porogen, shows promising results in fuel cell testing conditions at intermediate temperatures with good durability and an overall performance that exceeds current literature data.
Resumo:
Dissertação de Mestrado, Engenharia Elétrica e Eletrónica, Especialização em Sistemas de Energia e Controlo, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Dissertação para a obtenção do grau de Mestre Em Engenharia Electrotécnica Ramo de Energia
Resumo:
Este documento apresenta o trabalho desenvolvido no âmbito da disciplina de “Dissertação/Projeto/Estágio”, do 2º ano do Mestrado em Energias Sustentáveis. O crescente consumo energético das sociedades desenvolvidas e emergentes, associado ao consequente aumento dos custos de energia e dos danos ambientais resultantes, promove o desenvolvimento de novas formas de produção de energia, as quais têm como prioridade a sua obtenção ao menor custo possível e com reduzidos impactos ambientais. De modo a poupar os recursos naturais e reduzir a emissão com gases de efeito de estufa, é necessária a diminuição do consumo de energia produzida a partir de combustíveis fósseis. Assim, devem ser criadas alternativas para um futuro sustentável, onde as fontes renováveis de energia assumam um papel fundamental. Neste sentido, a produção de energia elétrica, através de sistemas solares fotovoltaicos, surge como uma das soluções. A presente dissertação tem como principal objetivo a realização do dimensionamento de uma central de miniprodução fotovoltaica, com ligação à rede elétrica, em uma exploração agrícola direcionada à indústria de laticínios, e o seu respetivo estudo de viabilidade económica. A exploração agrícola, que serve de objeto de estudo, está localizada na Ilha Graciosa, Açores, sendo a potência máxima a injetar na Rede Elétrica de Serviço Público, pela central de miniprodução, de 10 kW. Para o dimensionamento foi utilizado um software apropriado e reconhecido na área da produção de energia elétrica através de sistemas fotovoltaicos – o PVsyst –, compreendendo as seguintes etapas: a) definição das caraterísticas do local e do projeto; b) seleção dos módulos fotovoltaicos; c) seleção do inversor; d) definição da potência de ligação à rede elétrica da unidade de miniprodução. Posteriormente, foram estudadas diferentes hipóteses de sistemas fotovoltaicos, que se distinguem na opção de estrutura de fixação utilizada: dois sistemas fixos e dois com eixo incorporado. No estudo de viabilidade económica foram realizadas duas análises distintas a cada um dos sistemas fotovoltaicos considerados no dimensionamento, nomeadamente: uma análise em regime remuneratório bonificado e uma análise em regime remuneratório geral. Os resultados obtidos nos indicadores económicos do estudo de viabilidade económica realizado, serviram de apoio à decisão pelo sistema fotovoltaico mais favorável ao investimento. Conclui-se que o sistema fotovoltaico com inclinação adicional é a opção mais vantajosa em ambos os regimes remuneratórios analisados. Comprova-se, assim, que o sistema fotovoltaico com maior valor de produção de energia elétrica anual, que corresponde ao sistema fotovoltaico de dois eixos, não é a opção com maior rentabilidade em termos económicos, isto porque a remuneração proveniente da sua produção excedente não é suficiente para colmatar o valor do investimento mais acentuado de modo a obter indicadores económicos mais favoráveis, que os do sistema fotovoltaico com inclinação adicional. De acordo com o estudo de viabilidade económica efetuado independentemente do sistema fotovoltaico que seja adotado, é recuperado o investimento realizado, sendo a remuneração efetiva superior à que foi exigida. Assim, mesmo tendo em consideração o risco associado, comprova-se que todos os sistemas fotovoltaicos, em qualquer dos regimes remuneratórios, correspondem a investimentos rentáveis.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Perfil Energia, Refrigeração e Climatização
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
A presente dissertação centrou-se no estudo técnico-económico de dois cenários futuros para a continuação de fornecimento de energia térmica a um complexo de piscinas existente na região do vale do Tâmega. Neste momento a central de cogeração existente excedeu a sua licença de utilização e necessita de ser substituída. Os dois cenários em estudo são a compra de uma nova caldeira, a gás natural, para suprir as necessidades térmicas da caldeira existente a fuelóleo, ou o uso de um sistema de cogeração compacto que poderá estar disponível numa empresa do grupo. No primeiro cenário o investimento envolvido é cerca de 456 640 € sem proveitos de outra ordem para além dos requisitos térmicos, mas no segundo cenário os resultados são bem diferentes, mesmo que tenha de ser realizado o investimento de 1 000 000 € na instalação. Para este cenário foi efetuado um levantamento da legislação nacional no que toca à cogeração, recolheram-se dados do edifício como: horas de funcionamento, número de utentes, consumos de energia elétrica, térmica, água, temperatura da água das piscinas, temperatura do ar da nave, assim como as principais características da instalação de cogeração compacta. Com esta informação realizou-se o balanço de massa e energia e criou-se um modelo da nova instalação em software de modelação processual (Aspen Plus® da AspenTech). Os rendimentos térmico e elétrico obtidos da nova central de cogeração compacta foram, respetivamente, de 38,1% e 39,8%, com uma percentagem de perdas de 12,5% o que determinou um rendimento global de 78%. A avaliação da poupança de energia primária para esta instalação de cogeração compacta foi de 19,6 % o que permitiu concluir que é de elevada eficiência. O modelo criado permitiu compreender as necessidades energéticas, determinar alguns custos associados ao processo e simular o funcionamento da unidade com diferentes temperaturas de ar ambiente (cenários de verão e inverno com temperaturas médias de 20ºC e 5ºC). Os resultados revelaram uma diminuição de 1,14 €/h no custo da electricidade e um aumento do consumo de gás natural de 62,47 €/h durante o período mais frio no inverno devido ao aumento das perdas provocadas pela diminuição da temperatura exterior. Com esta nova unidade de cogeração compacta a poupança total anual pode ser, em média, de 267 780 € admitindo um valor para a manutenção de 97 698 €/ano. Se assim for, o projeto apresenta um retorno do investimento ao fim de 5 anos, com um VAL de 1 030 430 € e uma taxa interna de rentabilidade (TIR) de 14% (positiva, se se considerar a taxa de atualização do investimento de 3% para 15 anos de vida). Apesar do custo inicial ser elevado, os parâmetros económicos mostram que o projeto tem viabilidade económica e dará lucro durante cerca de 9 anos.
Resumo:
Em Portugal existem muitos espaços comerciais e industriais em que as necessidades térmicas de arrefecimento são muito superiores às necessidades de aquecimento devido aos ganhos internos que advêm da existência de equipamentos e da iluminação dos edifícios, assim como, da presença das pessoas. A instalação de sistemas convencionais de ar condicionado para espaços comerciais e industriais de grande dimensão está geralmente associada ao transporte de grandes caudais de ar, e consequentemente, a elevados consumos de energia primária, e também, elevados custos de investimento, de manutenção e de operação. O arrefecedor evaporativo é uma solução de climatização com elevada eficiência energética, cujo princípio de funcionamento promove a redução do consumo de energia primária nos edifícios. A metodologia utilizada baseou-se na criação de uma ferramenta informática de simulação do funcionamento de um protótipo de um arrefecedor evaporativo. Foi efetuada a modelação matemática das variáveis dinâmicas envolvidas, dos processos de transferência de calor e de massa, assim como dos balanços de energia que ocorrem no arrefecedor evaporativo. A ferramenta informática desenvolvida permite o dimensionamento do protótipo do arrefecedor evaporativo, sendo determinadas as caraterísticas técnicas (potência térmica, caudal, eficiência energética, consumo energético e consumo e água) de acordo com o tipo de edifício e com as condições climatéricas do ar exterior. Foram selecionados três dimensionamentos de arrefecedores evaporativos, representativos de condições reais de uma gama baixa, média e elevada de caudais de ar. Os resultados obtidos nas simulações mostram que a potência de arrefecimento (5,6 kW, 16,0 kW e 32,8 kW) e o consumo de água (8 l/h, 23,9 l/h e 48,96 l/h) aumentam com o caudal de ar do arrefecedor, 5.000 m3/h, 15.000 m3/h e 30.000 m3/h, respetivamente. A eficácia de permuta destes arrefecedores evaporativos, foi de 69%, 66% e 67%, respetivamente. Verificou-se que a alteração de zona climática de V1 para V2 implicou um aumento de 39% na potência de arrefecimento e de 20% no consumo de água, e que, a alteração de zona climática de V2 para V3 implicou um aumento de 39% na potência de arrefecimento e de 39% no consumo de água. O arrefecedor evaporativo apresenta valores de consumo de energia elétrica entre 40% a 80% inferiores aos dos sistemas de arrefecimento convencionais, sendo este efeito mais intenso quando a zona climática de verão se torna mais severa.
Resumo:
Os Transformadores de potência são máquinas de elevada importância ao nível dos Sistemas Elétricos de Energia (SEE) uma vez que são estas máquinas que possibilitam a interligação dos diferentes níveis de tensão da rede e a transmissão de energia elétrica em Corrente Alternada (CA). Geralmente, estas máquinas são de grandes dimensões e de elevado nível de complexidade construtiva. Caracterizam-se por possuírem períodos de vida útil bastante elevados (vinte a trinta anos) e preços elevados, o que conduz a um nível de exigência de fiabilidade muito elevada, uma vez que não e viável a existência de muitos equipamentos de reserva nos SEE. Com o objetivo de tentar maximizar o período de vida útil dos transformadores de potência e a sua fiabilidade, tenta-se, cada vez mais, implementar conceitos de manutenção preventiva a este tipo de máquinas. No entanto, a gestão da sua vida útil e extremamente complexa na medida em que, estas máquinas têm vários componentes cruciais e suscetiveis de originar falhas e, quase todos eles, encontram-se no interior de uma cuba. Desta forma, não e possível obter uma imagem do seu estado, em tempo real, sem colocar o transformador fora de serviço, algo que acarreta custos elevados. Por este motivo, desenvolveu-se uma técnica que permite obter uma indicação do estado do transformador, em tempo real, sem o retirar de serviço, colhendo amostras do óleo isolante e procedendo a sua análise físico-química e Analise Gases Dissolvidos (DGA). As análises aos óleos isolantes tem vindo a adquirir uma preponderância muito elevada no diagnóstico de falhas e na analise do estado de conservação destes equipamentos tendo-se desenvolvido regras para interpretação dos parâmetros dos óleos com carácter normativo. Considerando o conhecimento relativo a interpretação dos ensaios físico-químicos e DGA ao oleol, e possível desenvolver ferramentas capazes de otimizar essas mesmas interpretações e aplicar esse conhecimento no sentido de prever a sua evolução, assim como o surgimento de possíveis falhas em transformadores, para assim otimizar os processos de manutenção. Neste campo as Redes Neuronais Artificiais (RNAs) têm um papel fundamental
Resumo:
De forma a não comprometer o conforto ou a qualidade de vida, nos dias de hoje, é obrigatório que a energia elétrica esteja presente. Sendo indispensável, torna-se necessário assegurar que a sua distribuição seja feita da forma mais qualitativa possível. Uma resposta rápida e eficaz a possíveis falhas que ocorram na rede, irá garantir a tal qualidade de serviço desejada. Para isso, a automatização dos processos é uma grande evolução e objetivo de concretização do setor elétrico. Neste contexto surge o conceito de Smart Grid, que tem como principal objetivo a combinação entre o setor elétrico e a evolução da tecnologia. A par desta característica, estes tipos de redes vêm também trazer evoluções no âmbito ambiental, pois a produção de energia elétrica é feita, maioritariamente, por fontes de energia renovável. Este projeto incide na análise das vantagens técnicas e económicas da inclusão de equipamentos que detêm capacidades de armazenamento de energia, as Baterias de Armazenamento de Energia (BAE), neste tipo de redes. Para tal, procedeu-se à utilização do método do Despacho Económico, que tem como principal objetivo a determinação dos níveis de produção de todas as unidades geradoras do sistema, satisfazendo a carga, ao mais baixo custo de produção. Com este método, foram criados vários cenários de estudo com vista a validar todo o propósito deste projeto. Nesta dissertação, é também realizado um estudo de viabilidade económica destes equipamentos de armazenamento de energia.
Resumo:
The integration of wind power in eletricity generation brings new challenges to unit commitment due to the random nature of wind speed. For this particular optimisation problem, wind uncertainty has been handled in practice by means of conservative stochastic scenario-based optimisation models, or through additional operating reserve settings. However, generation companies may have different attitudes towards operating costs, load curtailment, or waste of wind energy, when considering the risk caused by wind power variability. Therefore, alternative and possibly more adequate approaches should be explored. This work is divided in two main parts. Firstly we survey the main formulations presented in the literature for the integration of wind power in the unit commitment problem (UCP) and present an alternative model for the wind-thermal unit commitment. We make use of the utility theory concepts to develop a multi-criteria stochastic model. The objectives considered are the minimisation of costs, load curtailment and waste of wind energy. Those are represented by individual utility functions and aggregated in a single additive utility function. This last function is adequately linearised leading to a mixed-integer linear program (MILP) model that can be tackled by general-purpose solvers in order to find the most preferred solution. In the second part we discuss the integration of pumped-storage hydro (PSH) units in the UCP with large wind penetration. Those units can provide extra flexibility by using wind energy to pump and store water in the form of potential energy that can be generated after during peak load periods. PSH units are added to the first model, yielding a MILP model with wind-hydro-thermal coordination. Results showed that the proposed methodology is able to reflect the risk profiles of decision makers for both models. By including PSH units, the results are significantly improved.
Resumo:
Em 2006, a IEA (Agência Internacional de Energia), publicou alguns estudos de consumos mundiais de energia. Naquela altura, apontava na fabricação de produtos, um consumo mundial de energia elétrica, de origem fóssil de cerca 86,16 EJ/ano (86,16×018 J) e um consumo de energia nos sistemas de vapor de 32,75 EJ/ano. Evidenciou também nesses estudos que o potencial de poupança de energia nos sistemas de vapor era de 3,27 EJ/ano. Ou seja, quase tanto como a energia consumida nos sistemas de vapor da U.E. Não se encontraram números relativamente a Portugal, mas comparativamente com outros Países publicitados com alguma similaridade, o consumo de energia em vapor rondará 0,2 EJ/ano e por conseguinte um potencial de poupança de cerca 0,02 EJ/ano, ou 5,6 × 106 MWh/ano ou uma potência de 646 MW, mais do que a potência de cinco barragens Crestuma/Lever! Trata-se efetivamente de muita energia; interessa por isso perceber o onde e o porquê deste desperdício. De um modo muito modesto, pretende-se com este trabalho dar algum contributo neste sentido. Procurou-se evidenciar as possibilidades reais de os utilizadores de vapor de água na indústria reduzirem os consumos de energia associados à sua produção. Não estão em causa as diferentes formas de energia para a geração de vapor, sejam de origem fóssil ou renovável; interessou neste trabalho estudar o modo de como é manuseado o vapor na sua função de transporte de energia térmica, e de como este poderá ser melhorado na sua eficiência de cedência de calor, idealmente com menor consumo de energia. Com efeito, de que servirá se se optou por substituir o tipo de queima para uma mais sustentável se a jusante se continuarem a verificarem desperdícios, descarga exagerada nas purgas das caldeiras com perda de calor associada, emissões permanentes de vapor para a atmosfera em tanques de condensado, perdas por válvulas nos vedantes, purgadores avariados abertos, pressão de vapor exageradamente alta atendendo às temperaturas necessárias, “layouts” do sistema de distribuição mal desenhados, inexistência de registos de produção e consumos de vapor, etc. A base de organização deste estudo foi o ciclo de vapor: produção, distribuição, consumo e recuperação de condensado. Pareceu importante incluir também o tratamento de água, atendendo às implicações na transferência de calor das superfícies com incrustações. Na produção de vapor, verifica-se que os maiores problemas de perda de energia têm a ver com a falta de controlo, no excesso de ar e purgas das caldeiras em exagero. Na distribuição de vapor aborda-se o dimensionamento das tubagens, necessidade de purgas a v montante das válvulas de controlo, a redução de pressão com válvulas redutoras tradicionais; será de destacar a experiência americana no uso de micro turbinas para a redução de pressão com produção simultânea de eletricidade. Em Portugal não se conhecem instalações com esta opção. Fabricantes da República Checa e Áustria, têm tido sucesso em algumas dezenas de instalações de redução de pressão em diversos países europeus (UK, Alemanha, R. Checa, França, etc.). Para determinação de consumos de vapor, para projeto ou mesmo para estimativa em máquinas existentes, disponibiliza-se uma série de equações para os casos mais comuns. Dá-se especial relevo ao problema que se verifica numa grande percentagem de permutadores de calor, que é a estagnação de condensado - “stalled conditions”. Tenta-se também evidenciar as vantagens da recuperação de vapor de flash (infelizmente de pouca tradição em Portugal), e a aplicação de termocompressores. Finalmente aborda-se o benchmarking e monitorização, quer dos custos de vapor quer dos consumos específicos dos produtos. Esta abordagem é algo ligeira, por manifesta falta de estudos publicados. Como trabalhos práticos, foram efetuados levantamentos a instalações de vapor em diversos sectores de atividades; 1. ISEP - Laboratório de Química. Porto, 2. Prio Energy - Fábrica de Biocombustíveis. Porto de Aveiro. 3. Inapal Plásticos. Componentes de Automóvel. Leça do Balio, 4. Malhas Sonix. Tinturaria Têxtil. Barcelos, 5. Uma instalação de cartão canelado e uma instalação de alimentos derivados de soja. Também se inclui um estudo comparativo de custos de vapor usado nos hospitais: quando produzido por geradores de vapor com queima de combustível e quando é produzido por pequenos geradores elétricos. Os resultados estão resumidos em tabelas e conclui-se que se o potencial de poupança se aproxima do referido no início deste trabalho.