922 resultados para Empirical Flow Models
Resumo:
In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.
Resumo:
This paper studies the application of the simulated method of moments (SMM) for the estimation of nonlinear dynamic stochastic general equilibrium (DSGE) models. Monte Carlo analysis is employed to examine the small-sample properties of SMM in specifications with different curvature. Results show that SMM is computationally efficient and delivers accurate estimates, even when the simulated series are relatively short. However, asymptotic standard errors tend to overstate the actual variability of the estimates and, consequently, statistical inference is conservative. A simple strategy to incorporate priors in a method of moments context is proposed. An empirical application to the macroeconomic effects of rare events indicates that negatively skewed productivity shocks induce agents to accumulate additional capital and can endogenously generate asymmetric business cycles.
Resumo:
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.
Resumo:
Le but de cette thèse est d étendre la théorie du bootstrap aux modèles de données de panel. Les données de panel s obtiennent en observant plusieurs unités statistiques sur plusieurs périodes de temps. Leur double dimension individuelle et temporelle permet de contrôler l 'hétérogénéité non observable entre individus et entre les périodes de temps et donc de faire des études plus riches que les séries chronologiques ou les données en coupe instantanée. L 'avantage du bootstrap est de permettre d obtenir une inférence plus précise que celle avec la théorie asymptotique classique ou une inférence impossible en cas de paramètre de nuisance. La méthode consiste à tirer des échantillons aléatoires qui ressemblent le plus possible à l échantillon d analyse. L 'objet statitstique d intérêt est estimé sur chacun de ses échantillons aléatoires et on utilise l ensemble des valeurs estimées pour faire de l inférence. Il existe dans la littérature certaines application du bootstrap aux données de panels sans justi cation théorique rigoureuse ou sous de fortes hypothèses. Cette thèse propose une méthode de bootstrap plus appropriée aux données de panels. Les trois chapitres analysent sa validité et son application. Le premier chapitre postule un modèle simple avec un seul paramètre et s 'attaque aux propriétés théoriques de l estimateur de la moyenne. Nous montrons que le double rééchantillonnage que nous proposons et qui tient compte à la fois de la dimension individuelle et la dimension temporelle est valide avec ces modèles. Le rééchantillonnage seulement dans la dimension individuelle n est pas valide en présence d hétérogénéité temporelle. Le ré-échantillonnage dans la dimension temporelle n est pas valide en présence d'hétérogénéité individuelle. Le deuxième chapitre étend le précédent au modèle panel de régression. linéaire. Trois types de régresseurs sont considérés : les caractéristiques individuelles, les caractéristiques temporelles et les régresseurs qui évoluent dans le temps et par individu. En utilisant un modèle à erreurs composées doubles, l'estimateur des moindres carrés ordinaires et la méthode de bootstrap des résidus, on montre que le rééchantillonnage dans la seule dimension individuelle est valide pour l'inférence sur les coe¢ cients associés aux régresseurs qui changent uniquement par individu. Le rééchantillonnage dans la dimen- sion temporelle est valide seulement pour le sous vecteur des paramètres associés aux régresseurs qui évoluent uniquement dans le temps. Le double rééchantillonnage est quand à lui est valide pour faire de l inférence pour tout le vecteur des paramètres. Le troisième chapitre re-examine l exercice de l estimateur de différence en di¤érence de Bertrand, Duflo et Mullainathan (2004). Cet estimateur est couramment utilisé dans la littérature pour évaluer l impact de certaines poli- tiques publiques. L exercice empirique utilise des données de panel provenant du Current Population Survey sur le salaire des femmes dans les 50 états des Etats-Unis d Amérique de 1979 à 1999. Des variables de pseudo-interventions publiques au niveau des états sont générées et on s attend à ce que les tests arrivent à la conclusion qu il n y a pas d e¤et de ces politiques placebos sur le salaire des femmes. Bertrand, Du o et Mullainathan (2004) montre que la non-prise en compte de l hétérogénéité et de la dépendance temporelle entraîne d importantes distorsions de niveau de test lorsqu'on évalue l'impact de politiques publiques en utilisant des données de panel. Une des solutions préconisées est d utiliser la méthode de bootstrap. La méthode de double ré-échantillonnage développée dans cette thèse permet de corriger le problème de niveau de test et donc d'évaluer correctement l'impact des politiques publiques.
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
La prise de décision est un processus computationnel fondamental dans de nombreux aspects du comportement animal. Le modèle le plus souvent rencontré dans les études portant sur la prise de décision est appelé modèle de diffusion. Depuis longtemps, il explique une grande variété de données comportementales et neurophysiologiques dans ce domaine. Cependant, un autre modèle, le modèle d’urgence, explique tout aussi bien ces mêmes données et ce de façon parcimonieuse et davantage encrée sur la théorie. Dans ce travail, nous aborderons tout d’abord les origines et le développement du modèle de diffusion et nous verrons comment il a été établi en tant que cadre de travail pour l’interprétation de la plupart des données expérimentales liées à la prise de décision. Ce faisant, nous relèveront ses points forts afin de le comparer ensuite de manière objective et rigoureuse à des modèles alternatifs. Nous réexaminerons un nombre d’assomptions implicites et explicites faites par ce modèle et nous mettrons alors l’accent sur certains de ses défauts. Cette analyse servira de cadre à notre introduction et notre discussion du modèle d’urgence. Enfin, nous présenterons une expérience dont la méthodologie permet de dissocier les deux modèles, et dont les résultats illustrent les limites empiriques et théoriques du modèle de diffusion et démontrent en revanche clairement la validité du modèle d'urgence. Nous terminerons en discutant l'apport potentiel du modèle d'urgence pour l'étude de certaines pathologies cérébrales, en mettant l'accent sur de nouvelles perspectives de recherche.
Resumo:
In the past decades since Schumpeter’s influential writings economists have pursued research to examine the role of innovation in certain industries on firm as well as on industry level. Researchers describe innovations as the main trigger of industry dynamics, while policy makers argue that research and education are directly linked to economic growth and welfare. Thus, research and education are an important objective of public policy. Firms and public research are regarded as the main actors which are relevant for the creation of new knowledge. This knowledge is finally brought to the market through innovations. What is more, policy makers support innovations. Both actors, i.e. policy makers and researchers, agree that innovation plays a central role but researchers still neglect the role that public policy plays in the field of industrial dynamics. Therefore, the main objective of this work is to learn more about the interdependencies of innovation, policy and public research in industrial dynamics. The overarching research question of this dissertation asks whether it is possible to analyze patterns of industry evolution – from evolution to co-evolution – based on empirical studies of the role of innovation, policy and public research in industrial dynamics. This work starts with a hypothesis-based investigation of traditional approaches of industrial dynamics. Namely, the testing of a basic assumption of the core models of industrial dynamics and the analysis of the evolutionary patterns – though with an industry which is driven by public policy as example. Subsequently it moves to a more explorative approach, investigating co-evolutionary processes. The underlying questions of the research include the following: Do large firms have an advantage because of their size which is attributable to cost spreading? Do firms that plan to grow have more innovations? What role does public policy play for the evolutionary patterns of an industry? Are the same evolutionary patterns observable as those described in the ILC theories? And is it possible to observe regional co-evolutionary processes of science, innovation and industry evolution? Based on two different empirical contexts – namely the laser and the photovoltaic industry – this dissertation tries to answer these questions and combines an evolutionary approach with a co-evolutionary approach. The first chapter starts with an introduction of the topic and the fields this dissertation is based on. The second chapter provides a new test of the Cohen and Klepper (1996) model of cost spreading, which explains the relationship between innovation, firm size and R&D, at the example of the photovoltaic industry in Germany. First, it is analyzed whether the cost spreading mechanism serves as an explanation for size advantages in this industry. This is related to the assumption that the incentives to invest in R&D increase with the ex-ante output. Furthermore, it is investigated whether firms that plan to grow will have more innovative activities. The results indicate that cost spreading serves as an explanation for size advantages in this industry and, furthermore, growth plans lead to higher amount of innovative activities. What is more, the role public policy plays for industry evolution is not finally analyzed in the field of industrial dynamics. In the case of Germany, the introduction of demand inducing policy instruments stimulated market and industry growth. While this policy immediately accelerated market volume, the effect on industry evolution is more ambiguous. Thus, chapter three analyzes this relationship by considering a model of industry evolution, where demand-inducing policies will be discussed as a possible trigger of development. The findings suggest that these instruments can take the same effect as a technical advance to foster the growth of an industry and its shakeout. The fourth chapter explores the regional co-evolution of firm population size, private-sector patenting and public research in the empirical context of German laser research and manufacturing over more than 40 years from the emergence of the industry to the mid-2000s. The qualitative as well as quantitative evidence is suggestive of a co-evolutionary process of mutual interdependence rather than a unidirectional effect of public research on private-sector activities. Chapter five concludes with a summary, the contribution of this work as well as the implications and an outlook of further possible research.
Resumo:
We present a framework for learning in hidden Markov models with distributed state representations. Within this framework, we derive a learning algorithm based on the Expectation--Maximization (EM) procedure for maximum likelihood estimation. Analogous to the standard Baum-Welch update rules, the M-step of our algorithm is exact and can be solved analytically. However, due to the combinatorial nature of the hidden state representation, the exact E-step is intractable. A simple and tractable mean field approximation is derived. Empirical results on a set of problems suggest that both the mean field approximation and Gibbs sampling are viable alternatives to the computationally expensive exact algorithm.
Resumo:
El presente proyecto tiene como objeto identificar cuáles son los conceptos de salud, enfermedad, epidemiología y riesgo aplicables a las empresas del sector de extracción de petróleo y gas natural en Colombia. Dado, el bajo nivel de predicción de los análisis financieros tradicionales y su insuficiencia, en términos de inversión y toma de decisiones a largo plazo, además de no considerar variables como el riesgo y las expectativas de futuro, surge la necesidad de abordar diferentes perspectivas y modelos integradores. Esta apreciación es pertinente dentro del sector de extracción de petróleo y gas natural, debido a la creciente inversión extranjera que ha reportado, US$2.862 millones en el 2010, cifra mayor a diez veces su valor en el año 2003. Así pues, se podrían desarrollar modelos multi-dimensional, con base en los conceptos de salud financiera, epidemiológicos y estadísticos. El termino de salud y su adopción en el sector empresarial, resulta útil y mantiene una coherencia conceptual, evidenciando una presencia de diferentes subsistemas o factores interactuantes e interconectados. Es necesario mencionar también, que un modelo multidimensional (multi-stage) debe tener en cuenta el riesgo y el análisis epidemiológico ha demostrado ser útil al momento de determinarlo e integrarlo en el sistema junto a otros conceptos, como la razón de riesgo y riesgo relativo. Esto se analizará mediante un estudio teórico-conceptual, que complementa un estudio previo, para contribuir al proyecto de finanzas corporativas de la línea de investigación en Gerencia.
Resumo:
An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system. This is a system in which higher-order regions are continuously attempting to predict the activity of lower-order regions at a variety of (increasingly abstract) spatial and temporal scales. The brain is thus revealed as a hierarchical prediction machine that is constantly engaged in the effort to predict the flow of information originating from the sensory surfaces. Such a view seems to afford a great deal of explanatory leverage when it comes to a broad swathe of seemingly disparate psychological phenomena (e.g., learning, memory, perception, action, emotion, planning, reason, imagination, and conscious experience). In the most positive case, the predictive processing story seems to provide our first glimpse at what a unified (computationally-tractable and neurobiological plausible) account of human psychology might look like. This obviously marks out one reason why such models should be the focus of current empirical and theoretical attention. Another reason, however, is rooted in the potential of such models to advance the current state-of-the-art in machine intelligence and machine learning. Interestingly, the vision of the brain as a hierarchical prediction machine is one that establishes contact with work that goes under the heading of 'deep learning'. Deep learning systems thus often attempt to make use of predictive processing schemes and (increasingly abstract) generative models as a means of supporting the analysis of large data sets. But are such computational systems sufficient (by themselves) to provide a route to general human-level analytic capabilities? I will argue that they are not and that closer attention to a broader range of forces and factors (many of which are not confined to the neural realm) may be required to understand what it is that gives human cognition its distinctive (and largely unique) flavour. The vision that emerges is one of 'homomimetic deep learning systems', systems that situate a hierarchically-organized predictive processing core within a larger nexus of developmental, behavioural, symbolic, technological and social influences. Relative to that vision, I suggest that we should see the Web as a form of 'cognitive ecology', one that is as much involved with the transformation of machine intelligence as it is with the progressive reshaping of our own cognitive capabilities.
Resumo:
Introducción: En Colombia la investigación sobre condiciones de trabajo y salud en minería carbonífera es escasa y no considera la percepción de la población expuesta y sus comportamientos frente a los riesgos inherentes. Objetivo: Determinar la asociación entre las condiciones de trabajo y morbilidad percibidas entre trabajadores de minas de carbón en Guachetá, Cundinamarca. Materiales y métodos: Se realizó un estudio transversal con 154 trabajadores seleccionados aleatoriamente del total registrado en la alcaldía municipal. Se indagó sobre características sociodemográficas, condiciones de trabajo y salud en las minas. Se estimaron prevalencias de los trastornos respiratorios, osteomusculares y auditivos, y se exploraron las asociaciones entre algunas condiciones de trabajo y los eventos con prevalencia superior a 30% de forma bivariada y múltiple, con regresiones Poisson con varianza robusta. Resultados: Los trabajadores fueron en su mayoría hombres, con edades entre 18 y 77 años de edad. Los problemas de salud más frecuentemente reportados fueron dolor lumbar (46,10%), dolor del miembro superior (40,26%), dolor del miembro inferior (34,42%), trastornos respiratorios (17,53%) y problemas auditivos (13,64%). Existen diferencias importantes en la percepción dependiendo de la antigüedad laboral y las condiciones subterráneas o no del trabajo. Conclusión: Los riesgos más reconocidos por los trabajadores son los relacionados con trastornos osteomusculares, al parecer por ser más evidentes en su cotidianidad. Las acciones en salud ocupacional podrán considerar estos hallazgos en sus planes de prevención de la enfermedad en las minas del carbón colombianas.
Resumo:
Esta tesis está dividida en dos partes: en la primera parte se presentan y estudian los procesos telegráficos, los procesos de Poisson con compensador telegráfico y los procesos telegráficos con saltos. El estudio presentado en esta primera parte incluye el cálculo de las distribuciones de cada proceso, las medias y varianzas, así como las funciones generadoras de momentos entre otras propiedades. Utilizando estas propiedades en la segunda parte se estudian los modelos de valoración de opciones basados en procesos telegráficos con saltos. En esta parte se da una descripción de cómo calcular las medidas neutrales al riesgo, se encuentra la condición de no arbitraje en este tipo de modelos y por último se calcula el precio de las opciones Europeas de compra y venta.
Resumo:
Debido a las crisis mundiales, la perdurabilidad empresarial se ha convertido en la primera preocupación de las organizaciones, puesto que los problemas económicos en otros países pueden generar un efecto negativo en las condiciones del mercado doméstico, que junto con el entorno empresarial complejo y dinámico en el que se deben desempeñar las empresas hoy en día gracias a la globalización, sumado al aumento en la competitividad nacional e internacional, la perdurabilidad de las empresas se está viendo seriamente comprometida. Lo anterior, ha llevado a las empresas a buscar nuevas formas de mejorar su salud financiera. Para medir la salud financiera empresarial, se pueden usar distintos indicadores como lo es el flujo de caja que está asociado con la rentabilidad, el patrimonio que está asociado a las dificultades financieras, entre otros, o a través de varios modelos de bancarrota, los cuales, por medio de un conjunto de ratios financieros, reflejan el estado actual de la organización y su probabilidad de fracaso en el futuro. Las estrategias comunitarias y el marketing permiten incrementar la salud financiera de las empresas a través de la orientación al cliente y el establecimiento de relaciones gana-gana a largo plazo con las diferentes comunidades con las que se relaciona la organización.
Resumo:
La teoría de redes de Johanson y Mattson (1988) explica como las pequeñas empresas, también conocidas como PyMes, utilizan las redes de negocio para desarrollar sus procesos de internacionalización. Es así que a través de las redes pueden superar sus limitaciones de tamaño para encontrar cierto tipo de fluidez y dinamismo en su gestión, con el fin de aprovechar los beneficios de la internacionalización. A partir del desarrollo y fortalecimiento de las relaciones dentro de la red la organización puede posicionarse en una instancia competitiva cada vez más fuerte (Jarillo, 1988). Según Forsgren y Johanson (1992), para los gerentes es importante coordinar la interacción entre los diferentes actores de la red, ya que a través de estas su posición dentro de la red mejora y así mismo el flujo de recursos será mayor. El propósito de este trabajo es analizar el modelo de internacionalización según la teoría de redes, desde una perspectiva cultural, de e-Tech Simulation una PyME “Born to be global” norteamericana. Esta empresa ha minimizado su riesgo de internacionalización, a través del desarrollo de acuerdos entre los diferentes actores. Al mejorar su posición dentro de la red, es decir al fortalecer aún más los lazos existentes y crear nuevas relaciones, la empresa ha obtenido mayores beneficios de la misma y ha logrado ser aún más flexible con sus clientes. Es por esto que a partir de este análisis se planteó una serie de recomendaciones para mejorar los procesos de negociación dentro de la red, bajo un contexto cultural. De igual forma se evidencio la importancia del papel del emprendimiento del gerente en los procesos de internacionalización, así como su habilidad para mezclar los recursos obtenidos de diferentes mercados internacionales para satisfacer las necesidades de los clientes.
Resumo:
At present, we are witnessing globalization as a truly worldwide phenomenon. Trade agreements among differing countries, a reduction in trade costs, the mobility of production factors, the free flow of information and so on are all proof of the present day era of globalization. Countries are trading with one another more and more every day and the effects of international trade on economies represent a central discussion in all economic spheres. In spite of increasing trade around the world and the promotion of globalization by multilateral organisms such as WTO and IMF, the effects of international trade are not yet clear. Economics literature concerning the effects of international trade on economic growth and welfare remains ambiguous in terms of both theoretical models and empirical research. The present thesis tries to contribute to the theoretical debate surrounding the effects of dynamic international trade, focusing in particular on the implications for economic growth, welfare and changes in the preferences of individuals.