700 resultados para Electrolyte diet
Resumo:
Variation in the diet of wood mice, Apodemus sylvaticus, was investigated in two contrasting habitats, deciduous and coniferous woodland, over 26 months and in 10 additional sites trapped during winter. Stomach contents were categorized as seed, fruit, green plant, root and animal material. Diet was evaluated using the percentage occurrence of each food type. Age and sex differences in diet occurred infrequently. Seed predominated throughout but was especially prevalent in autumn and winter. There was a peak in the incidence of animal material in the spring and early summer. Animal food was generally more frequent in mice caught in conifer plantations than in deciduous woodland during the longer-term study. Further, mice from the additional coniferous habitats had greater percentage occurrence of animal food than those from the additional deciduous sites. There was a negative, non-linear association between relative population size and diet in these winter samples. This suggests that spatial variation in numbers of A. sylvaticus is dictated by food availability and density is locally food limited.
Resumo:
The potential adverse effects on health of diet-derived advanced glycation end-products (AGEs) is of current interest, due to their proposed involvement in the disease progression of diabetic and uraemic conditions. However, accurate information about levels of AGEs in foods is lacking. The objective of this investigation was to determine the level of one particular AGE, N-epsilon-(carboxymethyl)lysine (CML), a marker of AGE formation, in a wide range of foods commonly consumed in a Western style diet. Individual foods (n = 257) were mixed, lyophilised, ground, reduced, fat-extracted, hydrolysed, and underwent solid-phase extraction. Extracts were analysed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Cereal (2.6 mg/100 g food) and fruit and vegetable (0.13 mg/100 g food) categories had the highest and lowest mean level of CML, respectively, when expressed in mg/100 g food. These data can be used for estimating potential consumer intakes, and provide information that can be used to educated consumers on how to reduce their CML intake. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of our study was to investigate whether intakes of total fat and fat subtypes were associated with esophageal adenocarcinoma (EAC), esophageal squamous cell carcinoma (ESCC), gastric cardia or gastric noncardia adenocarcinoma. From 1995–1996, dietary intake data was reported by 494,978 participants of the NIH-AARP cohort. The 630 EAC, 215 ESCC, 454 gastric cardia and 501 gastric noncardia adenocarcinomas accrued to the cohort. Cox proportional hazards regression was used to examine the association between the dietary fat intakes, whilst adjusting for potential confounders. Although apparent associations were observed in energy-adjusted models, multivariate adjustment attenuated results to null [e.g., EAC energy adjusted hazard ratio (HR) and 95% confidence interval (95% CI) 1.66 (1.27–2.18) p for trend <0.01; EAC multivariate adjusted HR (95% CI) 1.17 (0.84–1.64) p for trend 5 0.58]. Similar patterns were also observed for fat subtypes [e.g., EAC saturated fat, energy adjusted HR (95% CI) 1.79 (1.37–2.33) p for trend <0.01; EAC saturated fat, multivariate adjusted HR (95% CI) 1.27 (0.91–1.78) p for trend 5 0.28]. However, in multivariate models an inverse association for polyunsaturated fat (continuous) was seen for EAC in subjects with a body mass index (BMI) in the normal range (18.5–<25 kg/m2) [HR (95% CI) 0.76 (0.63–0.92)], that was not present in overweight subjects [HR (95% CI) 1.04 (0.96–1.14)], or in unstratified analysis [HR (95% CI) 0.97 (0.90–1.05)]. p for interaction 5 0.02. Overall, we found null associations between the dietary fat intakes with esophageal or gastric cancer risk; although a protective effect of polyunsaturated fat intake was seen for EAC in subjects with a normal BMI.
Resumo:
Experimental values for the carbon dioxide solubility in eight pure electrolyte solvents for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), ?-butyrolactone (?BL), ethyl acetate (EA) and methyl propionate (MP) – are reported as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility data, the Henry’s law constant of the carbon dioxide in these solvents was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOthermX software and those calculated by the Peng–Robinson equation of state implemented into Aspen plus. From this work, it appears that the CO2 solubility is higher in linear carbonates (such as DMC, EMC, DEC) than in cyclic ones (EC, PC, ?BL). Furthermore, the highest CO2 solubility was obtained in MP and EA solvents, which are comparable to the solubility values reported in classical ionicliquids. The precision and accuracy of the experimental values, considered as the per cent of the relative average absolute deviations of the Henry’s law constants from appropriate smoothing equations and from literature values, are close to (1% and 15%), respectively. From the variation of the Henry’s law constants with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs free energy, the enthalpy, and the entropy are calculated, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state.
Resumo:
1. A more general contingency model of optimal diet choice is developed, allowing for simultaneous searching and handling, which extends the theory to include grazing and browsing by large herbivores.</p><p>2. Foraging resolves into three modes: purely encounter-limited, purely handling-limited and mixed-process, in which either a handling-limited prey type is added to an encounter-limited diet, or the diet becomes handling-limited as it expands.</p><p>3. The purely encounter-limited diet is, in general, broader than that predicted by the conventional contingency model,</p><p>4. As the degree of simultaneity of searching and handling increases, the optimal diet expands to the point where it is handling-limited, at which point all inferior prey types are rejected,</p><p>5. Inclusion of a less profitable prey species is not necessarily independent of its encounter rate and the zero-one rule does not necessarily hold: some of the less profitable prey may be included in the optimal diet. This gives an optimal foraging explanation for herbivores' mixed diets.</p><p>6. Rules are shown for calculating the boundary between encounter-limited and handling-limited diets and for predicting the proportion of inferior prey to be included in a two-species diet,</p><p>7. The digestive rate model is modified to include simultaneous searching and handling, showing that the more they overlap, the more the predicted diet-breadth is likely to be reduced.</p>
Resumo:
1. This study has compared the effects of ibuprofen and indomethacin upon renal haemodynamics, electrolyte excretion and renin release in the presence and absence of frusemide under sodium replete conditions in eight healthy volunteers. 2. Neither ibuprofen (400 mg and 800 mg) nor indomethacin (50 mg) affected renal blood flow, glomerular filtration rate or electrolyte excretion in the basal state. 3. Frusemide had no effect on renal blood flow, but significantly increased glomerular filtration rate. This latter change was suppressed significantly only by ibuprofen 400 mg. Frusemide-induced diuresis was inhibited by all treatments, while natriuresis following frusemide was inhibited by indomethacin only. 4. Significant increments in plasma renin activity, which were suppressed by all treatments, were observed after frusemide. The degree of inhibition of the renin responses was significantly greater in the presence of indomethacin than with either dose of ibuprofen. 5. In a sodium replete setting in healthy volunteers, indomethacin and ibuprofen had no detrimental effects on basal renal function. In the presence of frusemide, indomethacin had more anti-natriuretic and renin-suppressing effect than ibuprofen. There was no evidence for a dose-related effect of ibuprofen.
Resumo:
Increasing fruit and vegetable (FV) consumption is associated with reduced risk of major diseases. However, it is unclear if health benefits are related to increased micronutrient intake or to improvements in overall diet profile. This review aimed to assess if increasing FV consumption had an impact on diet profile. In the systematic review, twelve studies revealed increases in micronutrient intakes, whilst the meta-analysis confirmed macronutrient findings from the systematic review showing no significant difference between the intervention and control groups in energy (kcals) in seven studies (mean difference = 1 kcals [95% CI = -115, 117]; P = 0.98), significant decreases in total fat (% energy) in 5 studies (Mean difference = -4% [95% CI = -5, -3]; P = <0.00001) and significant increases in fibre in 6 studies (Mean difference = 5.36 grams [95% CI = 4, 7]; P = <0.00001) and total carbohydrate (% energy) in 4 studies (Mean = 4% [95% CI = 2, 5]; P = <0.00001). In conclusion, results indicate that increased FV consumption increases micronutrient, carbohydrate and fibre intakes and possibly reduces fat intake, with no overall effect on energy intake. Therefore health benefits may act through an improvement in overall diet profile alongside increased micronutrient intakes.
Resumo:
Rice is elevated in arsenic (As) compared to other staple grains. The Bangladeshi community living in the United Kingdom (UK) has a ca. 30-fold higher consumption of rice than white Caucasians. In order to assess the impact of this difference in rice consumption, urinary arsenicals of 49 volunteers in the UK (Bangladeshi n = 37; white Caucasians n = 12) were monitored along with dietary habits. Total urinary arsenic (As(t)) and speciation analysis for dimethylarsinic acid (DMA), monomethylarsonic acid (MA) and inorganic arsenic (iAs) was conducted. Although no significant difference was found for As(t) (median: Bangladeshis 28.4 µg L(-1)) and white Caucasians (20.6 µg L(-1)), the sum of medians of DMA, MA and iAs for the Bangladeshi group was found to be over 3-fold higher (17.9 µg L(-1)) than for the Caucasians (3.50 µg L(-1)). Urinary DMA was significantly higher (p <0.001) in the UK Bangladeshis (median: 16.9 µg DMA L(-1)) than in the white Caucasians (3.16 µg DMA L(-1)) as well as iAs (p <0.001) with a median of 0.630 µg iAs L(-1) for Bangladeshi and 0.250 µg iAs L(-1) for Caucasians. Cationic compounds were significantly lower in the Bangladeshis (2.93 µg L(-1)) than in Caucasians (14.9 µg L(-1)). The higher DMA and iAs levels in the Bangladeshis are mainly the result of higher rice consumption: arsenic is speciated in rice as both iAs and DMA, and iAs can be metabolized, through MA, to DMA by humans. This study shows that a higher dietary intake of DMA alters the DMA/MA ratio in urine. Consequently, DMA/MA ratio as an indication of methylation capacity in populations consuming large quantities of rice should be applied with caution since variation in the quantity and type of rice eaten may alter this ratio.
Resumo:
Knowledge about the diet of fish-eating predators is critical when evaluating conflicts with the fishing industry. Numerous primary studies have examined the diet of grey seals Halichoerus grypus and common seals Phoca vitulina in a bid to understand the ecology of these predators. However, studies of large-scale spatial and temporal variation in seal diet are limited. Therefore this review combines the results of seal diet studies published between 1980 and 2000 to examine how seal diet varies at a range of spatial and temporal scales. Our results revealed extensive spatial variation in gadiform, perciform and flatfish consumption, likely reflecting variation in prey availability. Flatfish and gadiform consumption varied between years, reflecting changes in fish assemblages as a consequence of factors such as varying fishing pressures, climate change and natural fluctuations in populations. Perciform and gadiform consumption varied seasonally: in addition there was a significant interaction between season and seal species, indicating that grey and common seals exhibited different patterns of seasonal variation in their consumption of Perciformes and Gadiformes. Multivariate analysis of grey seal diet revealed spatial variation at a much smaller scale, with different species dominating the diet in different areas. The existence of spatial and temporal variation in seal diet emphasizes that future assessments of the impact of seal populations should not be based on past or localized estimates of diet and highlights the need for up-to-date, site specific estimates of diet composition in the context of understanding and resolving seal/fisheries conflict. © 2012 Marine Biological Association of the United Kingdom.