964 resultados para EXTRACELLULAR-MATRIX COMPONENTS
Resumo:
Tissue transglutaminase (TG2) is a multifunctional Ca2+ activated protein crosslinking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a non-transamidating mechanism via its association with fibronectin (FN), heparan sulphates (HS) and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modelling and mutagenesis we have identified the HS binding site of TG2 202KFLKNAGRDCSRRSSPVYVGR222. We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate the RGD-induced loss of cell adhesion on FN via binding to syndecan-4, leading to activation of PKCa, pFAK-397 and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed.
Resumo:
Administration of active TG2 to two different in vitro angiogenesis assays resulted in the accumulation of a complex extracellular matrix (ECM) leading to the suppression of endothelial tube formation without causing cell death. Matrix accumulation was accompanied by a decreased rate of ECM turnover, with increased resistance to matrix metalloproteinase-1. Intratumor injection of TG2 into mice bearing CT26 colon carcinoma tumors demonstrated a reduction in tumor growth, and in some cases tumor regression. In TG2 knockout mice, tumor progression was increased and survival rate reduced compared to wild-type mice. In wild-type mice, an increased presence of TG2 was detectable in the host tissue around the tumor. Analysis of CT26 tumors injected with TG2 revealed fibrotic-like tissue containing increased collagen, TG2-mediated crosslink and reduced organized vasculature. TG2-mediated modulation of cell behavior via changes in the ECM may provide a new approach to solid tumor therapy.
Resumo:
In fibrotic conditions increases in TG2 activity has been linked to an increase in the deposition of extracellular matrix proteins. Using TG2 transfected Swiss 3T3 fibroblasts expressing TG2 under the control of the tetracycline-regulated inducible promoter, we demonstrate that induction of TG2 not only stimulates an increase in collagen and fibronectin deposition but also an increase in the expression of these proteins. Increased TG2 expression in these fibroblasts led to NF-kappaB activation, resulting in the increased expression of transforming growth factor (TGF) beta(1). In addition, cells overexpressing TG2 demonstrated an increase in biologically active TGFbeta(1) in the extracellular environment. A specific site-directed inhibitor of TG abolished the NF-kappaB and TGFbeta1 activation and the subsequent elevation in the synthesis and deposition of extracellular matrix proteins, confirming that this process depends on the induction of transglutaminase activity. Treatment of TG2-induced fibroblasts with nontoxic doses of nitric oxide donor S-nitroso-N-acetylpenicillamine resulted in decreased TG2 activity and apprehension of the inactive enzyme on the cell surface. This was paralleled by a reduction in activation of NF-kappaB and TGFbeta(1) production with a subsequent decrease in collagen expression and deposition. These findings support a role for NO in the regulation of TG2 function in the extracellular environment.
Resumo:
This review summarises the functions of the enzyme tissue transglutaminase (TG2) in the extracellular matrix (ECM) both as a matrix stabiliser through its protein cross-linking activity and as an important cell adhesion protein involved in cell survival. The contribution of extracellular TG2 to the pathology of important diseases such as cancer and fibrosis are discussed with a view to the potential importance of TG2 as a therapeutic target. The medical applications of TG2 are further expanded by detailing the use of transglutaminase cross-linking in the development of novel biocompatible biomaterials for use in soft and hard tissue repair.
Resumo:
Tissue transglutaminase (TG2) has been reported as a wound response protein. Once over-expressed by cells under stress such as during wound healing or following tissue damage, TG2 can be secreted and deposited into extracellular matrix, where it forms a heterocomplex (TG-FN) with the abundant matrix protein fibronectin (FN). A further cellular response elicited after tissue damage is that of matrix remodelling leading to the release of the Arg-Gly-Asp (RGD) containing matrix fragments by matrix matelloproteinases (MMPs). These peptides are able to block the interaction between integrin cell surface receptors and ECM proteins, leading to the loss of cell adhesion and ultimately Anoikis. This study provides a mechanism for TG2, as a stress-induced matrix protein, in protecting the cells from the RGD-dependent loss of cell adhesion and rescuing the cells from Anoikis. Mouse fibroblasts were used as a major model for this study, including different types of cell surface receptor knockout mouse embryonic fibroblasts (MEFs) (such as syndecan-4, a5, ß1 or ß3 integrins). In addition specific syndecan-2 targetting siRNAs, ß1 integrin and a4ß1 integrin functional blocking antibodies, and a specific targeting peptide against a5ß1 integrin A5-1 were used to investigate the involvement of these receptors in the RGD-independent cell adhesion on TG-FN. Crucial for TG-FN to compensate the RGD-independent cell adhesion and actin cytoskeleton formation is the direct interaction between the heparan sulfate chains of syndecan-4 and TG2, which elicits the inside-out signalling of a5ß1 integrin and the intracellular activation of syndecan-2 by protein kinase C a (PKCa). By using specific inhibitors, a cell-permeable inhibiting peptide and the detection of the phosphorylation sites for protein kinases and/or the translocation of PKCa via Western blotting, the activation of PKCa, focal adhesion kinase (FAK), ERK1/2 and Rho kinase (ROCK) were confirmed as downstream signalling molecules. Importantly, this study also investigated the influence of TG-FN on matrix turnover and demonstrated that TG-FN can restore the RGD-independent FN deposition process via an a5ß1 integrin and syndecan-4/2 co-signalling pathway linked by PKCa in a transamidating-independent manner. These data provide a novel function for TG2 in wound healing and matrix turnover which is a key event in a number of both physiological and pathological processes.
Resumo:
Pulsed field gel electrophoresis of 82 intestinal spirochaete isolates showed specific differentiation of Serpulina pilosicoli and Serpulina hyodysenteriae although considerable heterogeneity was observed, especially amongst S. pilosicoli isolates. In several cases genotypically similar isolates originated from different animals suggesting that cross-species transmission may have occurred. The Caco-2 and Caco-21HT29 cell models have been proposed as potentially realistic models of intestinal infection. Quantitation of adhesion to the cells showed isolate 3 82/91 (from a bacteraemia) to adhere at significantly greater numbers than any other isolate tested. This isolate produced a PFGE profile which differed from other S. pilosicoli isolates and so would be of interest for further study. Comparison of bacteraemic and other S. pilosicoli isolates suggested that bacteraemic isolates were not more specifically adapted for adhesion to, or invasion of the epithelial cell layer than other S. pilosicoli isolates. Genotypically similar isolates from differing animal origins adhered to the Caco-2 model at similar levels. Generation of a random genomic library of S. pilosicoli and screening with species specific monoclonal antibody has enabled the identification of a gene sequence encoding a protein which showed significant homology with an ancestral form of the enzyme pyruvate oxidoreductase. Immunoscreening with polyclonal serum identified the sequences of two gene clusters and a probable arylsulphatase. One gene cluster represented a ribosomal gene cluster which has a similar molecular arrangement to Borrelia burgdorjeri, Treponema pallidum and Thermatoga maritima. The other gene cluster contained an ABC transporter protein, sorbitol dehydrogenase and phosphomannose isomerase. An ELISA type assay was used to demonstrate that isolates of S. pilosicoli could adhere to components of the extracellular matrix such as collagen (type 1), fibronectin, laminin, and porcine gastric mucin.
Resumo:
Scaffolds derived from processed tissues offer viable alternatives to synthetic polymers as biological scaffolds for regenerative medicine. Tissue-derived scaffolds provide an extracellular matrix (ECM) as the starting material for wound healing and the functional reconstruction of tissues, offering a potentially valuable approach for the replacement of damaged or missing tissues. Additionally, acellular tissue may provide a natural microenvironment for host-cell migration and the induction of stem cell differentiation to contribute to tissue regeneration. There are a number of processing methods that aim to stabilize and provide an immunologically inert tissue scaffold. Furthermore, these tissue-processing methods can often be applied to xenogenic transplants because the essential components of the ECM are often maintained between species. In this study, we applied several tissue-processing protocols to the cornea in order to obtain a decellularized cornea matrix that maintained the clarity and mechanical properties of the native tissue. Histology, mechanical testing and electron microscopy techniques were used to assess the cell extraction process and the organization of the remaining ECM. In vitro cell seeding experiments confirmed the processed corneas’ biocompatibility.
Resumo:
We have recently found that celiac disease patient serum-derived autoantibodies targeted against transglutaminase 2 interfere with several steps of angiogenesis, including endothelial sprouting and migration, though the mechanism involved remained to be fully characterized. This study now investigated the processes underlying the antiangiogenic effects exerted by celiac disease patient antibodies on endothelial cells, with particular regard to the adhesion, migration, and polarization signaling pathway. We observed that celiac IgA reduced endothelial cell numbers by affecting adhesion without increasing apoptosis. Endothelial cells in the presence of celiac IgA showed weak attachment, a high susceptibility to detach from fibronectin, and a disorganized extracellular matrix due to a reduction of protein cross-links. Furthermore, celiac patient IgA led to secretion of active transglutaminase 2 from endothelial cells into the culture supernatants. Additionally, cell surface transglutaminase 2 mediated integrin clustering in the presence of celiac IgA was coupled to augmented expression of ß1-integrin. We also observed that celiac patient IgA-treated endothelial cells had migratory defects and a less polarized phenotype when compared to control groups, and this was associated with the RhoA signaling pathway. These biological effects mediated by celiac IgA on endothelial cells were partially influenced but not completely abolished by R281, an irreversible extracellular transglutaminase 2 enzymatic activity inhibitor. Taken together, our results imply that celiac patient IgA antibodies disturb the extracellular protein cross-linking function of transglutaminase 2, thus altering cell-extracellular matrix interactions and thereby affecting endothelial cell adhesion, polarization, and motility. © 2013 Springer Basel.
Resumo:
Introduction: Diabetic nephropathy (DN) is the leading cause of chronic kidney failure, however the mechanisms underlying the characteristic expansion of the extracellular matrix (ECM) in diabetic kidneys remain controversial and unclear. In non-diabetic kidney scarring the protein crosslinking enzyme tissue transglutaminase (tTg) has been implicated in this process by the formation of increased ε-(γ-glutamyl)lysine bonds between ECM components in both experimental and human disease. Studies in db/db diabetic mice and in streptozotocin-treated rats have suggested a similar mechanism, although the relevance of this to human disease has not been addressed. Methods: We have undertaken a retrospective analysis of renal biopsies from 16 DN patients with type 2 diabetes mellitus using an immunohistochemical and immunofl uorescence approach, with tTg and ε-(γ-glutamyl)lysine crosslink quantified by confocal microscopy. Results: Immunofl uorescent analysis of human biopsies (confocal microscopy) showed increases in levels of tTg (+1,266%, p <0.001) and ε-(γ-glutamyl)lysine (+486%, p <0.001) in kidneys with DN compared to normal. Changes were predominantly in the extracellular periglomerular and peritubular areas. tTg staining correlated with e-(?-glutamyl)lysine (r = 0.615, p <0.01) and renal scarring (Masson's trichrome, r = 0.728, p <0.001). Significant changes in e-(?-glutamyl)lysine were also noted intracellularly in some (=5%) tubular epithelial cells. This is consistent with cells undergoing a novel transglutaminase-mediated cell death process in response to Ca influx and subsequent activation of intracellular tTg. Conclusion: Changes in tTg and ε-(γ- glutamyl)lysine occur in human DN. Cellular export of tTg may therefore be a factor in the perpetuation of DN by crosslinking and stabilisation of the ECM, while intracellular activation may lead to cell death contributing towards tubular atrophy. Copyright © 2004 S. Karger AG, Basel.
Resumo:
Chagas disease, caused by the parasite Trypanosoma cruzi, is the cause of Chronic chagasic cardiomyopathy (CCC). The prospection of innovative therapeutic agents against CCC is a major task. The recombinant form of 21 (rP21), a secreted T. cruzi protein involved in host cell invasion and on progression of chronic inflammatory processes have been studied as a potential novel therapeutic target. Our present work aimed to verify and investigate the impact of rP21 in the formation of blood vessels in vitro and in vivo. First, tEnd cells were treated with different concentrations of rP21 or bacterial extract and viability and cellular adhesion were evaluated by MTT and angiogenesis inhibition by Matrigel tube formation assay and murine model. To verify the proteolytic activity of rP21 on extracellular matrix (ECM) components, fibrinogen, matrigel and fibronectin was incubated with rP21 or not. In addition, we performed proliferation assays and cell cycle analysis. Furthermore, the accumulation and distribution of F-actin was determined by Phalloidin staining using ImageJ software. Finally, tEnd cells were incubated with rP21 and the mRNA levels were analyzed by real-time PCR. Our results showed that rP21 did not alter cell viability and adhesion, but strongly inhibited vessel formation in vitro and in vivo. Tube formation assay showed that angiogenesis inhibition was dependent of the CXCR4-rP21 binding. In addition to these results, we observed that the rP21 was able to inhibit cell proliferation and promoted a significant reduction in the number of 4n cells (G2/M phase). Moreover, we found that rP21 significantly increased F-actin levels and this protein was able to modulate expression of genes related to angiogenesis and actin cytoskeleton. However, rP21 showed no significant activity on the matrix components. In this sense, we conclude that the rP21-endothelial cells (ECs) interaction via CXCR4 promotes inhibition of vessel formation through a cascade of intracellular events, such as inhibition of ECs proliferation and modulation of the expression of molecules associated with angiogenic processes and actin cytoskeleton.
Resumo:
Fibrosis of any tissue is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal organ function. Although much research has focused on the mechanisms underlying disease pathogenesis, there are still no effective antifibrotic therapies that can reverse, stop or delay the formation of scar tissue in most fibrotic organs. As fibrosis can be described as an aberrant wound healing response, a recent hypothesis suggests that the cells involved in this process gain an altered heritable phenotype that promotes excessive fibrotic tissue accumulation. This article will review the most recent observations in a newly emerging field that links epigenetic modifications to the pathogenesis of fibrosis. Specifically, the roles of DNA methylation and histone modifications in fibrotic disease will be discussed.
Resumo:
The urokinase plasminogen activator (uPA) system (uPAS) comprises the uPA, its cell membrane receptor (uPAR) and two specific inhibitors, the plasminogen activator inhibitor 1 (PAI-1) and 2 (PAI-2). The uPA converts the plasminogen in the serine protease plasmin, involved in a number of physiopathological processes requiring basement membrane (BM) or extracellular matrix (ECM) remodelling, including tumor progression and metastasis. The tumor-promoting role of PAS is not limited to the degradation of ECM and BM required for local diffusion and spread to distant sites of malignant cells, but widens to tumor cell proliferation, adhesion and migration, intravasation, growth at the metastatic site and neoangiogenesis. The relevance of uPAS in cancer progression has been confirmed by several studies which documented an increased expression of uPA, uPAR and PAI-1 in different human malignancies, and a positive correlation between the levels of one or more of them and a poor prognosis. For these reasons, the uPAS components have aroused considerable interest as suitable targets for anticancer therapy, and several pharmacological approaches aimed at inhibiting the uPA and/or uPAR expression or function in preclinical and clinical settings have been described. In the present manuscript, we will first glance at uPAS biological functions in human cancer progression and its clinical significance in terms of prognosis and therapy. We will then review the main findings regarding expression and function of uPAS components in thyroid cancer tissues along with the experimental and clinical evidence suggesting its potential value as molecular prognostic marker and therapeutic target in thyroid cancer patients.
Resumo:
Le stress oxydatif peut provenir de sources exogènes comme les UVA ou de sources endogènes comme la chaîne respiratoire (OXPHOS). L’oxydation des composants cellulaires a été associée avec la dégénération, des phénotypes de vieillissement et des pertes de fonctionnalités des tissus. Les UVA sont les plus efficaces des rayons UV à induire de l’oxydation, tel que démontré par la formation de dommages oxydatifs à l’ADN et par l’apparition de délétions mitochondriales qui en résultent. La délétion mitochondriale de 4977 pb (ADNmtCD4977), la plus commune, et celle de 3895 pb (ADNmt3895) sont deux délétions reliées au photovieillissement cutané et à l’exposition au stress oxydant. Le phénomène de vieillissement dans la peau est bien documenté et se traduit par une dégradation de la matrice extracellulaire, une perte d’élasticité et la formation de rides. Toutefois, peu d’études portent sur la cornée humaine alors qu’elle est un tissu exposé directement aux rayonnements UV au même titre que la peau. Nous avons donc tenté mieux comprendre l’effet de l’oxydation exogène et endogène sur cette structure. L’analyse de la localisation des délétions ADNmtCD4977 et ADNmtCD4977 dans l’oeil humain a permis de révéler qu’elles se concentrent principalement dans le stroma cornéen et s’accumule avec l’âge. Le stroma cornéen est la couche cellulaire qui confère la transparence et la rigidité à la cornée humaine. Ces résultats nous ont suggéré une implication des UVA dans le photovieillissement de la cornée. Nous avons donc entrepris de vérifier les changements liés à l’exposition aux UVA dans le stroma cornéen puisque les UVA sont connus pour causer des altérations à la matrice extracellulaire (ECM) au niveau cutané. Nous avons donc créé un modèle de photovieillisement par une exposition chronique aux UVA sur des kératocytes avec lesquels nous avons fait sécréter une ECM. Nos résultats nous ont démontré qu’une exposition chronique aux UVA cause des altérations à l’ECM cornéen semblable à des phénotypes de photvieillissement. En effet, nous avons dénoté des changements transcriptomiques et protéomiques pour certains collagènes et protéoglycans. Une atteinte aux collagènes par le vieillissement cornéen se traduit entre autres par une rigidification, une opacification et un changement dans son pouvoir réfractif qui mène à une perte de la vision. Par ailleurs, notre avons également investigué l’implication du stress oxydatif dans la dystrophie cornéenne endothéliale de Fuchs (FECD), une maladie dégénérative de l’endothélium cornéen, qui mène à une perte de vision et est une cause principale de greffe cornéenne. L’étiologie de la maladie est encore inconnue, mais le stress oxydatif est soupçonné de jouer un rôle important dans la pathogenèse. Nos résultats ont amené de nouvelles évidences de l’implication de l’oxydation dans la maladie par l’augmentation de la quantité d’ADN mitochondrial et un raccourcissement des télomères dans des explants de cornées pathologiques. Nos résultats nous ont également démontré que la mise en culture de cellules FECD permettait la sélection de cellules fonctionnelles et comparables à des cellules saines en termes de quantité d’ADN mitochondrial et de son intégrité, de sensibilité à l’oxydation et de longueur télomérique. Les résultats obtenus soutiennent ainsi la possibilité d’employer les cellules FECD fonctionnelles sélectionnées pour utilisation en génie tissulaire afin de créer des cornées autologues pour pallier aux manques de greffes cornéennes. Enfin, nos résultats apportent de nouvelles évidences quant à l’implication du stress oxydatif dans le photovieillissement cornéen et dans l’étiologie de la FECD.
Resumo:
La protéine de liaison aux facteurs de croissance analogues à l’insuline (IGFBP)-2 est une protéine circulante fortement associée à la résistance à l’insuline qui module les effets métaboliques d’IGF-I et IGF-II en s’y associant directement, et qui exerce aussi des actions IGF-indépendantes via sa liaison à la matrice extracellulaire et aux intégrines. Chez l’homme, de faibles niveaux d’IGFBP-2 sont associés à un profil lipidique délétère, ainsi qu’à une augmentation de la masse grasse et de la résistance à l’insuline. Les travaux décrits dans cette thèse montrent chez l’humain et la souris que les niveaux d’IGFBP-2 sont associés de manière indépendante aux composantes du risque cardiométabolique. Chez l’homme, de faibles niveaux d’IGFBP-2 sont associés à la dyslipidémie athérogène. Une valeur seuil d’IGFBP-2 de 221.5 ng/mL a permis de discriminer entre les sujets métaboliquement sains et ceux répondant aux critères du syndrome métabolique. En plus de son association avec la résistance à l’insuline et les composantes du profil lipidique, de faibles niveaux d’IGFBP-2 sont associés à une fonction cardiaque diminuée chez les patients atteints de sténose aortique, tel qu’évaluée par le volume d’éjection indexé, un indice de fonction global du ventricule gauche qui intègre la fonction pompe et le remodelage du tissu. Chez l’homme, des niveaux d’IGFBP-2 élevés sont associés à un tissu adipeux brun plus volumineux ainsi qu’à une activité métabolique plus importante de ce dernier. Ces observations, telles qu’évaluées par PET/CT, sont aussi validées chez les souris surexprimant la forme humaine d’IGFBP-2. Nos travaux démontrent que les niveaux d’IGFBP-2 sont fortement associés au métabolisme des lipoprotéines et des lipides, à la fonction cardiaque ainsi qu’à l’activité du tissu adipeux brun. L’influence des niveaux d’IGFBP-2 par différentes altérations métaboliques menant à l’augmentation du risque cardiométabolique pourrait faire de ce dernier un biomarqueur précoce et intégrateur. Les travaux exposés dans la présente thèse soulignent aussi un rôle mécanistique potentiel pour IGFBP-2 dans la protection contre certaines altérations du métabolisme.
Resumo:
Autologous nerve grafts are the current gold standard for the repair of peripheral nerve injuries. However, there is a need to develop an alternative to this technique, as donor-site morbidities such as neuroma formation and permanent loss of function are a few of the limitations concerned with this technique. Artificial nerve conduits have therefore emerged as an alternative for the repair of short peripheral nerve defects of less than 30 mm, however they do not surpass autologous nerve grafts clinically. To develop a nerve conduit that supports regeneration over long nerve gaps and in large diameter nerves, researchers have focused on functionalizing of the conduits by studying the components that enhance nerve regeneration such as micro/nano-topography, growth factor delivery systems, supportive cells and extracellular matrix (ECM) proteins as well as understanding the complex biological reactions that take place during peripheral nerve regeneration. This thesis presents strategies to improve peripheral nerve interfaces to better the regenerative potential by using dorsal root ganglions (DRGs) isolated from neonatal rats as an in vitro model of nerve regeneration. The work started off by investigating the usefulness of a frog foam protein Ranaspumin-2 (Rsn2) to coat biomaterials for compatibility, this lead to the discovery of temporary cell adhesion on polydimethylsiloxane (PDMS), which was investigated as a suitable tool to derive cell-sheets for nerve repair. The influence of Rsn2 anchored to specific adhesion peptide sequences, such as isoleucine-lysine-valine-alanine-valine (IKVAV), a sequence derived from laminin proven to promote cell adhesion and neurite outgrowth, was tested as a useful means to influence nerve regeneration. This approach improves the axonal outgrowth and maintains outgrowth long term. Based on the hypothesis that combinational modulation of substrate topography, stiffness and neurotrophic support, affects axonal outgrowth in whole DRGs, dissociated DRGs were used to assess if these factors similarly act at the single cell level. Rho associated protein kinase (ROCK) and myosin II inhibitors, which affect cytoskeletal contractility, were used to influence growth cone traction forces and have shown that these factors work in combination by interfering with growth cone dynamic creating a different response in axonal outgrowth at the single cell level.