974 resultados para ELECTROCHEMICAL FORMATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene films with different structures were catalytically grown on the silicon substrate pre-deposited with a gold film by hot filament chemical vapor deposition under different conditions, where methane, hydrogen and nitrogen were used as the reactive gases. The morphological and compositional properties of graphene films were studied using advanced instruments including field emission scanning electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the structure and composition of graphene films are changed with the variation of the growth conditions. According to the theory related to thermodynamics, the formation of graphene films was theoretically analyzed and the results indicate that the formation of graphene films is related to the fast incorporation and precipitation of carbon. The electron field emission (EFE) properties of graphene films were studied in a high vacuum system of ∼10-6 Pa and the EFE results show that the turn-on field is in a range of 5.2-5.64 V μm-1 and the maximum current density is about 63 μ A cm-2 at the field of 7.7 V μm-1. These results are important to control the structure of graphene films and have the potential applications of graphene in various nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge and chemical composition of ambient particles in an urban environment were determined using a Neutral Particle and Air Ion Spectrometer and an Aerodyne compact Time-Of-Flight Aerosol Mass Spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulphate, which were not observed in the organic fraction. Comparison of days with and without particle formation events revealed that ammonium and sulphate were the dominant species on particle formation days while high concentrations of biomass burning OA inhibited particle growth. Analyses of the degree of particle neutralisation lead us to conclude that an excess of ammonium enabled particle formation and growth. In addition, the large ion concentration increased sharply during particle growth, suggesting that during nucleation the neutral gaseous species ammonia and sulphuric acid react to form ammonium and sulphate ions. Overall, we conclude that the mechanism of particle formation and growth involved ammonia and sulphuric acid, with limited input from organics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controlled growth of ultra-small Ge/Si quantum dot (QD) nuclei (≈1 nm) suitable for the synthesis of uniform nanopatterns with high surface coverage, is simulated using atom-only and size non-uniform cluster fluxes. It is found that seed nuclei of more uniform sizes are formed when clusters of non-uniform size are deposited. This counter-intuitive result is explained via adatom-nanocluster interactions on Si(100) surfaces. Our results are supported by experimental data on the geometric characteristics of QD patterns synthesized by nanocluster deposition. This is followed by a description of the role of plasmas as non-uniform cluster sources and the impact on surface dynamics. The technique challenges conventional growth modes and is promising for deterministic synthesis of nanodot arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cluster ions and charged and neutral nanoparticle concentrations were monitored using a neutral cluster and air ion spectrometer (NAIS) over a period of one year in Brisbane, Australia. The study yielded 242 complete days of usable data, of which particle formation events were observed on 101 days. Small, intermediate and large ion concentrations were evaluated in real time. In the diurnal cycle, small ion concentration was highest during the second half of the night while large ion concentrations were a maximum during the day. The small ion concentration showed a decrease when the large ion concentration increased. Particle formation was generally followed by a peak in the intermediate ion concentration. The rate of increase of intermediate ions was used as the criteria for identifying particle formation events. Such events were followed by a period of growth to larger sizes and usually occurred between 8 am and 2 pm. Particle formation events were found to be related to the wind direction. The gaseous precursors for the production of secondary particles in the urban environment of Brisbane have been shown to be ammonia and sulfuric acid. During these events, the nanoparticle number concentrations in the size range 1.6 to 42 nm, which were normally lower than 1x104 cm-3, often exceeded 5x104 cm-3 with occasional values over 1x105 cm-3. Cluster ions generally occurred in number concentrations between 300 and 600 cm-3 but decreased significantly to about 200 cm-3 during particle formation events. This was accompanied by an increase in the large ion concentration. We calculated the fraction of nanoparticles that were charged and investigated the occurrence of possible overcharging during particle formation events. Overcharging is defined as the condition where the charged fraction of particles is higher than in charge equilibrium. This can occur when cluster ions attach to neutral particles in the atmosphere, giving rise to larger concentrations of charged particles in the short term. Ion-induced nucleation is one of the mechanisms of particle formation in the atmosphere, and overcharging has previously been considered as an indicator of this process. The possible role of ions in particle formation was investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the effect of a kinetic undercooling condition on the evolution of a free boundary in Hele--Shaw flow, in both bubble and channel geometries. We present analytical and numerical evidence that the bubble boundary is unstable and may develop one or more corners in finite time, for both expansion and contraction cases. This loss of regularity is interesting because it occurs regardless of whether the less viscous fluid is displacing the more viscous fluid, or vice versa. We show that small contracting bubbles are described to leading order by a well-studied geometric flow rule. Exact solutions to this asymptotic problem continue past the corner formation until the bubble contracts to a point as a slit in the limit. Lastly, we consider the evolving boundary with kinetic undercooling in a Saffman--Taylor channel geometry. The boundary may either form corners in finite time, or evolve to a single long finger travelling at constant speed, depending on the strength of kinetic undercooling. We demonstrate these two different behaviours numerically. For the travelling finger, we present results of a numerical solution method similar to that used to demonstrate the selection of discrete fingers by surface tension. With kinetic undercooling, a continuum of corner-free travelling fingers exists for any finger width above a critical value, which goes to zero as the kinetic undercooling vanishes. We have not been able to compute the discrete family of analytic solutions, predicted by previous asymptotic analysis, because the numerical scheme cannot distinguish between solutions characterised by analytic fingers and those which are corner-free but non-analytic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years fine and ultra fine particles emitted from internal combustion engines have attracted an increasing level of attention. This attention has arisen from epidemiological studies conducted by a number of research groups and pointing to the health effects resulting from inhalation of fine particles. Previous studies on the influence of fuel sulfur level on diesel vehicle emissions were mainly concentrated on particle mass emissions. This study aims at investigating the influence of the reduction of diesel fuel sulfur level on the emission and formation of nanoparticles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric-pressure microplasma-assisted electrochemistry was used to synthesize Ag nanoparticles (NPs) for plasmonic applications. It is shown that the size and dispersion of the nanoparticles can be controlled by variation of the microplasma-assisted electrochemical process parameters such as electrolyte concentration and temperature. Moreover, Ag NP synthesis is also achieved in the absence of a stabilizer, with additional control over the dispersion and NP formation possible. As the microplasma directly reduces Ag ions in solution, the incorporation of toxic reducing agents into the electrolytic solution is unnecessary, making this an environmentally friendly fabrication technique with strong potential for the design and growth of plasmonic nanostructures for a variety of applications. These experiments therefore link microplasma-assisted electrochemical synthesis parameters with plasmonic characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cleavage and polyadenylation factor (CPF) is a multi‐protein complex that functions in pre‐mRNA 3′‐end formation and in the RNA polymerase II (RNAP II) transcription cycle. Ydh1p/Cft2p is an essential component of CPF but its precise role in 3′‐end processing remained unclear. We found that mutations in YDH1 inhibited both the cleavage and the polyadenylation steps of the 3′‐end formation reaction in vitro. Recently, we demonstrated that an important function of CPF lies in the recognition of poly(A) site sequences and RNA binding analyses suggesting that Ydh1p/Cft2p interacts with the poly(A) site region. Here we show that mutant ydh1 strains are deficient in the recognition of the ACT1 cleavage site in vivo. The C‐terminal domain (CTD) of RNAP II plays a major role in coupling 3′‐end processing and transcription. We provide evidence that Ydh1p/Cft2p interacts with the CTD of RNAP II, several other subunits of CPF and with Pcf11p, a component of CF IA. We propose that Ydh1p/Cft2p contributes to the formation of important interaction surfaces that mediate the dynamic association of CPF with RNAP II, the recognition of poly(A) site sequences and the assembly of the polyadenylation machinery on the RNA substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs are small non-coding RNAs that mediate post-transcriptional gene silencing. Fear-extinction learning in C57/Bl6J mice led to increased expression of the brain-specific microRNA miR-128b, which disrupted stability of several plasticity-related target genes and regulated formation of fear-extinction memory. Increased miR-128b activity may therefore facilitate the transition from retrieval of the original fear memory toward the formation of a new fear-extinction memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.