858 resultados para Dose-Response Relationship, Drug.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two novel dinuclear complexes involving the antihypertensive drug valsartan and copper(II) ion have been prepared in water and DMSO. The complex compositions were determined as: [Cu(vals)(H(2)O)(3)](2)center dot 6H(2)O and [Cu(vals)(H(2)O)(2)DMSO](2)center dot 2H(2)O. They were thoroughly characterized by elemental and thermal analysis, spectrophotometric titrations and UV-visible, diffuse reflectance, FTIR, Raman and EPR spectroscopies. No effect of the ligand on two tested osteoblastic cell lines in culture (one normal MOT3E1 and one tumoral UMR106) was observed in concentrations up to 100 mu M. Higher concentrations of Valsartan are required to induce cytotoxicity in both cell lines. The antiproliferative effect of the tested complex ([Cu(vals) (H(2)O)(3)](2)center dot 6H(2)O) in a dose-response manner, was higher in the UMR106 osteoblastic cell line than that of the MC3T3E1 normal line at concentrations >= 100 mu M. Morphological alterations are in accordance with proliferative observations. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella tesi si analizzano le principali fonti del rumore aeronautico, lo stato dell'arte dal punto di vista normativo, tecnologico e procedurale. Si analizza lo stato dell'arte anche riguardo alla classificazione degli aeromobili, proponendo un nuovo indice prestazionale in alternativa a quello indicato dalla metodologia di certificazione (AC36-ICAO) Allo scopo di diminuire l'impatto acustico degli aeromobili in fase di atterraggio, si analizzano col programma INM i benefici di procedure CDA a 3° rispetto alle procedure tradizionali e, di seguito di procedure CDA ad angoli maggiori in termini di riduzione di lunghezza e di area delle isofoniche SEL85, SEL80 e SEL75.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subject of this Ph.D. research thesis is the development and application of multiplexed analytical methods based on bioluminescent whole-cell biosensors. One of the main goals of analytical chemistry is multianalyte testing in which two or more analytes are measured simultaneously in a single assay. The advantages of multianalyte testing are work simplification, high throughput, and reduction in the overall cost per test. The availability of multiplexed portable analytical systems is of particular interest for on-field analysis of clinical, environmental or food samples as well as for the drug discovery process. To allow highly sensitive and selective analysis, these devices should combine biospecific molecular recognition with ultrasensitive detection systems. To address the current need for rapid, highly sensitive and inexpensive devices for obtaining more data from each sample,genetically engineered whole-cell biosensors as biospecific recognition element were combined with ultrasensitive bioluminescence detection techniques. Genetically engineered cell-based sensing systems were obtained by introducing into bacterial, yeast or mammalian cells a vector expressing a reporter protein whose expression is controlled by regulatory proteins and promoter sequences. The regulatory protein is able to recognize the presence of the analyte (e.g., compounds with hormone-like activity, heavy metals…) and to consequently activate the expression of the reporter protein that can be readily measured and directly related to the analyte bioavailable concentration in the sample. Bioluminescence represents the ideal detection principle for miniaturized analytical devices and multiplexed assays thanks to high detectability in small sample volumes allowing an accurate signal localization and quantification. In the first chapter of this dissertation is discussed the obtainment of improved bioluminescent proteins emitting at different wavelenghts, in term of increased thermostability, enhanced emission decay kinetic and spectral resolution. The second chapter is mainly focused on the use of these proteins in the development of whole-cell based assay with improved analytical performance. In particular since the main drawback of whole-cell biosensors is the high variability of their analyte specific response mainly caused by variations in cell viability due to aspecific effects of the sample’s matrix, an additional bioluminescent reporter has been introduced to correct the analytical response thus increasing the robustness of the bioassays. The feasibility of using a combination of two or more bioluminescent proteins for obtaining biosensors with internal signal correction or for the simultaneous detection of multiple analytes has been demonstrated by developing a dual reporter yeast based biosensor for androgenic activity measurement and a triple reporter mammalian cell-based biosensor for the simultaneous monitoring of two CYP450 enzymes activation, involved in cholesterol degradation, with the use of two spectrally resolved intracellular luciferases and a secreted luciferase as a control for cells viability. In the third chapter is presented the development of a portable multianalyte detection system. In order to develop a portable system that can be used also outside the laboratory environment even by non skilled personnel, cells have been immobilized into a new biocompatible and transparent polymeric matrix within a modified clear bottom black 384 -well microtiter plate to obtain a bioluminescent cell array. The cell array was placed in contact with a portable charge-coupled device (CCD) light sensor able to localize and quantify the luminescent signal produced by different bioluminescent whole-cell biosensors. This multiplexed biosensing platform containing whole-cell biosensors was successfully used to measure the overall toxicity of a given sample as well as to obtain dose response curves for heavy metals and to detect hormonal activity in clinical samples (PCT/IB2010/050625: “Portable device based on immobilized cells for the detection of analytes.” Michelini E, Roda A, Dolci LS, Mezzanotte L, Cevenini L , 2010). At the end of the dissertation some future development steps are also discussed in order to develop a point of care (POCT) device that combine portability, minimum sample pre-treatment and highly sensitive multiplexed assays in a short assay time. In this POCT perspective, field-flow fractionation (FFF) techniques, in particular gravitational variant (GrFFF) that exploit the earth gravitational field to structure the separation, have been investigated for cells fractionation, characterization and isolation. Thanks to the simplicity of its equipment, amenable to miniaturization, the GrFFF techniques appears to be particularly suited for its implementation in POCT devices and may be used as pre-analytical integrated module to be applied directly to drive target analytes of raw samples to the modules where biospecifc recognition reactions based on ultrasensitive bioluminescence detection occurs, providing an increase in overall analytical output.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Therapeutisches Drug Monitoring (TDM) ist eine Maßnahme, bei der durch Messung der Medikamentenspiegel im Blut die Dosis ermittelt wird, bei der mit höchster Wahrscheinlichkeit mit Therapieansprechen gerechnet werden kann. Dabei wird angenommen, dass die Konzentrationen im Blut mit denen im Wirkkompartiment korrelieren. Für Antipsychotika wurde gezeigt, dass die Konzentrationen im Blut direkt mit denen im Gehirn korrelieren, die Verteilung zwischen den beiden Kompartimenten ist jedoch für die verschiedenen Antipsychotika sehr unterschiedlich. Die Distribution von Arzneistoffen zwischen Blut und Gehirn wird durch Effluxtransporter in der Blut-Hirn-Schranke kontrolliert. Welche Rolle dabei P-Glykoprotein (P-gp) für die Verteilung von atypischen Antipsychotika spielt und wie die Pharmakokinetik und –dynamik durch diesen Transporter beeinflusst werden, sollte in dieser Arbeit untersucht werden. Für die Messung des neu eingeführten Antipsychotikums Aripiprazol, sowie für seinen aktiven Metaboliten Dehydroaripiprazol, wurde eine hochleistungsflüssigchromatographische (HPLC) Methode mit Säulenschaltung und spektrophotometrischer Detektion etabliert. Die Methode wurde für die Messung von Serumproben schizophrener Patienten eingesetzt, um einen therapeutischen Bereich für Aripiprazol zu ermitteln. Aus der Analyse von 523 Patientenproben wurde herausgefunden, dass Aripiprazol-Serumkonzentrationen von 150 bis 300 ng/ml mit gutem klinischen Ansprechen und einem geringen Risiko für Nebenwirkungen einhergingen. Weiterhin wurde festgestellt, dass die Serumspiegel bei gleichzeitiger Gabe von Inhibitoren und Induktoren der Cytochrom P450 (CYP) Isoenzyme CYP2D6 und CYP3A4 erhöht bzw. gesenkt wurden. Am Modell der P-gp Knockout Maus im Vergleich zu FVB Wildtyp Mäusen wurden Konzentrationsverläufe von Antipsychotika nach i.p. Gabe von Amisulprid, Aripiprazol, Dehydroaripiprazol, Clozapin, Desmethylclozapin, Haloperidol, Olanzapin, Quetiapin, Risperidon und 9-Hydroxyrisperidon sowie der Kontrollsubstanz Domperidon im Gehirn und Blut über 24 Stunden mittels HPLC-Methoden gemessen. Welchen Einfluss eine verminderte Expression von P-gp auf die Pharmakodynamik hat, wurde in zwei Verhaltenstests untersucht. Mit Hilfe des Rotarods wurden motorische Effekte der Arzneistoffe erfasst und mittels Radial Arm Water Maze kognitive Fähigkeiten. Risperidon und sein aktiver Metabolit 9-Hydroxyrisperidon waren die stärksten Substrate von P-gp. 10-fach höhere Konzentrationen im Gehirn der P-gp Knockout Mäuse führten zu 10-fach stärkeren Beeinträchtigungen in den pharmakodynamischen Untersuchungen im Vergleich zu Wildtyp Tieren. Amisulprid, Aripiprazol, Dehydroaripiprazol, Desmethylclozapin und Quetiapin konnten ebenfalls als Substrate von P-gp identifiziert werden. Olanzapin, Haloperidol und Clozapin wurden durch P-gp wenig bzw. nicht in ihrer Pharmakokinetik und –dynamik beeinflusst. Da P-gp von Nagern und Menschen nach derzeitiger Kenntnis in ihren Substrateigenschaften weitgehend übereinstimmen, muss bei einer Behandlung von schizophrenen Patienten mit Antipsychotika, die als Substrate von P-gp identifiziert wurden, davon ausgegangen werden, dass eine Veränderung der Expression oder Aktivität von P-gp, genetisch verursacht oder durch Medikamente bedingt, für das Therapieansprechen oder das Auftreten von Nebenwirkungen bedeutsam sind.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this study were to establish dose-response and blood concentration-response relationships for robenacoxib, a novel nonsteroidal anti-inflammatory drug with selectivity for inhibition of the cyclooxygenase (COX)-2 isoenzyme, in a canine model of synovitis. Acute synovitis of the stifle joint was induced by intra-articular injection of sodium urate crystals. Robenacoxib (0.25, 0.5, 1.0, 2.0 and 4.0 mg/kg), placebo and meloxicam (0.2 mg/kg) were administered subcutaneously (s.c.) 3 h after the urate crystals. Pharmacodynamic endpoints included data from forceplate analyses, clinical orthopaedic examinations and time course of inhibition of COX-1 and COX-2 in ex vivo whole blood assays. Blood was collected for pharmacokinetics. Robenacoxib produced dose-related improvement in weight-bearing, pain and swelling as assessed objectively by forceplate analysis (estimated ED(50) was 1.23 mg/kg for z peak force) and subjectively by clinical orthopaedic assessments. The analgesic and anti-inflammatory effects of robenacoxib were significantly superior to placebo (0.25-4 mg/kg robenacoxib) and were non-inferior to meloxicam (0.5-4 mg/kg robenacoxib). All dosages of robenacoxib produced significant dose-related inhibition of COX-2 (estimated ED(50) was 0.52 mg/kg) but no inhibition of COX-1. At a dosage of 1-2 mg/kg administered s.c., robenacoxib should be at least as effective as 0.2 mg/kg of meloxicam in suppressing acute joint pain and inflammation in dogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluconazole is effective in the therapy of cryptococcal meningitis in patients with AIDS. The optimal dosage of fluconazole and the impact of combination with flucytosine are not known. In this study, rabbits with experimental cryptococcal meningitis were given fluconazole at low, intermediate, or high dose or in combination with a low or intermediate dose of flucytosine. Serial cerebrospinal fluid (CSF) examinations showed that all three doses of fluconazole and low-dose fluconazole in combination with intermediate-dose flucytosine were effective in reducing CSF cryptococcal titer, lactate, white blood cell count, and cryptococcal antigen (CRAG) titers. The intermediate and high doses of fluconazole reduced CSF fungal (P < .05) and CRAG (P < .001) titers earlier than low-dose fluconazole alone or in combination with flucytosine. Only the highest dose of fluconazole reduced brain edema after 7 days. In this model of cryptococcal meningitis, there was evidence of a dose response with fluconazole but no in vivo synergism with flucytosine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gibberellin (GA) is a growth promoting hormone implicated in regulating a diversity of plant processes. This dissertation examines the role of GA metabolic and signaling genes in woody plant growth and development. Transgenic modifications, expression analysis, physiological/biochemical assays, biometric measurements and histological analysis were used to understand the regulatory roles these genes play in the model woody plant, Populus. Our results highlight the importance of GA regulatory genes in woody perennial growth, including: phenology, wood formation, phenotypic plasticity, and growth/survival under field conditions. We characterize two putative Populus orthologs of the SHORT INTERNODES (SHI) gene from Arabidopsis, a negative regulator of GA signaling. RNAi-mediated suppression of Populus SHI-like genes increased several growth-related traits, including extent of xylem proliferation, in a dose-dependent manner. Three Populus genes, sharing sequence homology to the positive regulator of GA signaling gene PHOTOPERIOD-RESPONSIVE 1 (PHOR1) from Solanum, are up-regulated in GA-deficient and insensitive plants suggesting a conserved role in GA signaling. We demonstrate that Populus PHOR1-like genes have overlapping and divergent function(s). Two PHOR1-like genes are highly expressed in roots, predominantly affect root growth (e.g., morphology, starch quantity and gravitropism), and induced by short-days (SD). The other PHOR1-like gene is ubiquitously expressed with a generalized function in root and shoot development. The effects of GA catabolic and signaling genes on important traits (e.g., adaptive and productivity traits) were studied in a multi-year field trial. Transgenics overexpressing GA 2-oxidase (GA2ox) and DELLA genes showed tremendous variation in growth, form, foliage, and phenology (i.e., vegetative and reproductive). Observed gradients in trait modifications were correlated to transgene expression levels, in a manner suggesting a dose-dependent relationship. We explore GA2ox and DELLA genes involvement in mediating growth responses to immediate short-term drought stress, and SD photoperiods, signaling prolonged periods of stress (e.g., winter bud dormancy). GA2ox and DELLA genes show substantial up-regulation in response to drought and SDs. Transgenics overexpressing homologs of these genes subjected to drought and SD photoperiods show hypersensitive growth restraint and increased stress resistances. These results suggest growth cessation (i.e., dormancy) in response to adverse conditions is mediated by GA regulatory genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Engineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface. RESULTS: A novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 mug/cm(2). The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber. Dose-response measurements with ZnO nanoparticles (0.3-8.5 mug/cm(2)) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 mug/cm(2 )ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels. CONCLUSION: The ALICE is a useful tool for dose-controlled nanoparticle (or solute) exposure of cells at the air-liquid interface. Significant differences between cellular response after ZnO nanoparticle exposure under submerged and air-liquid interface conditions suggest that pharmaceutical and toxicological studies with inhaled (nano-)particles should be performed under the more realistic air-liquid interface, rather than submerged cell conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical explosive volcanism is one of the most important natural factors that significantly impact the climate system and the carbon cycle on annual to multi-decadal time scales. The three largest explosive eruptions in the last 50�years�Agung, El Chichón, and Pinatubo�occurred in spring/summer in conjunction with El Niño events and left distinct negative signals in the observational temperature and CO2 records. However, confounding factors such as seasonal variability and El Niño-Southern Oscillation (ENSO) may obscure the forcing-response relationship. We determine for the first time the extent to which initial conditions, i.e., season and phase of the ENSO, and internal variability influence the coupled climate and carbon cycle response to volcanic forcing and how this affects estimates of the terrestrial and oceanic carbon sinks. Ensemble simulations with the Earth System Model (Climate System Model 1.4-carbon) predict that the atmospheric CO2 response is �60 larger when a volcanic eruption occurs during El Niño and in winter than during La Niña conditions. Our simulations suggest that the Pinatubo eruption contributed 11�±�6 to the 25�Pg terrestrial carbon sink inferred over the decade 1990�1999 and �2�±�1 to the 22�Pg oceanic carbon sink. In contrast to recent claims, trends in the airborne fraction of anthropogenic carbon cannot be detected when accounting for the decadal-scale influence of explosive volcanism and related uncertainties. Our results highlight the importance of considering the role of natural variability in the carbon cycle for interpretation of observations and for data-model intercomparison.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Epidemiological studies show that elevated levels of particulate matter in ambient air are highly correlated with respiratory and cardiovascular diseases. Atmospheric particles originate from a large number of sources and have a highly complex and variable composition. An assessment of their potential health risks and the identification of the most toxic particle sources would require a large number of investigations. Due to ethical and economic reasons, it is desirable to reduce the number of in vivo studies and to develop suitable in vitro systems for the investigation of cell-particle interactions. METHODS We present the design of a new particle deposition chamber in which aerosol particles are deposited onto cell cultures out of a continuous air flow. The chamber allows for a simultaneous exposure of 12 cell cultures. RESULTS Physiological conditions within the deposition chamber can be sustained constantly at 36-37°C and 90-95% relative humidity. Particle deposition within the chamber and especially on the cell cultures was determined in detail, showing that during a deposition time of 2 hr 8.4% (24% relative standard deviation) of particles with a mean diameter of 50 nm [mass median diameter of 100 nm (geometric standard deviation 1.7)] are deposited on the cell cultures, which is equal to 24-34% of all charged particles. The average well-to-well variability of particles deposited simultaneously in the 12 cell cultures during an experiment is 15.6% (24.7% relative standard deviation). CONCLUSIONS This particle deposition chamber is a new in vitro system to investigate realistic cell-particle interactions at physiological conditions, minimizing stress on the cell cultures other than from deposited particles. A detailed knowledge of particle deposition characteristics on the cell cultures allows evaluating reliable dose-response relationships. The compact and portable design of the deposition chamber allows for measurements at any particle sources of interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative imaging with 18F-FDG PET/CT has the potential to provide an in vivo assessment of response to radiotherapy (RT). However, comparing tissue tracer uptake in longitudinal studies is often confounded by variations in patient setup and potential treatment induced gross anatomic changes. These variations make true response monitoring for the same anatomic volume a challenge, not only for tumors, but also for normal organs-at-risk (OAR). The central hypothesis of this study is that more accurate image registration will lead to improved quantitation of tissue response to RT with 18F-FDG PET/CT. Employing an in-house developed “demons” based deformable image registration algorithm, pre-RT tumor and parotid gland volumes can be more accurately mapped to serial functional images. To test the hypothesis, specific aim 1 was designed to analyze whether deformably mapping tumor volumes rather than aligning to bony structures leads to superior tumor response assessment. We found that deformable mapping of the most metabolically avid regions improved response prediction (P<0.05). The positive predictive power for residual disease was 63% compared to 50% for contrast enhanced post-RT CT. Specific aim 2 was designed to use parotid gland standardized uptake value (SUV) as an objective imaging biomarker for salivary toxicity. We found that relative change in parotid gland SUV correlated strongly with salivary toxicity as defined by the RTOG/EORTC late effects analytic scale (Spearman’s ρ = -0.96, P<0.01). Finally, the goal of specific aim 3 was to create a phenomenological dose-SUV response model for the human parotid glands. Utilizing only baseline metabolic function and the planned dose distribution, predicting parotid SUV change or salivary toxicity, based upon specific aim 2, became possible. We found that the predicted and observed parotid SUV relative changes were significantly correlated (Spearman’s ρ = 0.94, P<0.01). The application of deformable image registration to quantitative treatment response monitoring with 18F-FDG PET/CT could have a profound impact on patient management. Accurate and early identification of residual disease may allow for more timely intervention, while the ability to quantify and predict toxicity of normal OAR might permit individualized refinement of radiation treatment plan designs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The addition of bevacizumab to chemotherapy improves progression-free survival in metastatic breast cancer and pathological complete response rates in the neoadjuvant setting. Micrometastases are dependent on angiogenesis, suggesting that patients might benefit from anti-angiogenic strategies in the adjuvant setting. We therefore assessed the addition of bevacizumab to chemotherapy in the adjuvant setting for women with triple-negative breast cancer. METHODS For this open-label, randomised phase 3 trial we recruited patients with centrally confirmed triple-negative operable primary invasive breast cancer from 360 sites in 37 countries. We randomly allocated patients aged 18 years or older (1:1 with block randomisation; stratified by nodal status, chemotherapy [with an anthracycline, taxane, or both], hormone receptor status [negative vs low], and type of surgery) to receive a minimum of four cycles of chemotherapy either alone or with bevacizumab (equivalent of 5 mg/kg every week for 1 year). The primary endpoint was invasive disease-free survival (IDFS). Efficacy analyses were based on the intention-to-treat population, safety analyses were done on all patients who received at least one dose of study drug, and plasma biomarker analyses were done on all treated patients consenting to biomarker analyses and providing a measurable baseline plasma sample. This trial is registered with ClinicalTrials.gov, number NCT00528567. FINDINGS Between Dec 3, 2007, and March 8, 2010, we randomly assigned 1290 patients to receive chemotherapy alone and 1301 to receive bevacizumab plus chemotherapy. Most patients received anthracycline-containing therapy; 1638 (63%) of the 2591 patients had node-negative disease. At the time of analysis of IDFS, median follow-up was 31·5 months (IQR 25·6-36·8) in the chemotherapy-alone group and 32·0 months (27·5-36·9) in the bevacizumab group. At the time of the primary analysis, IDFS events had been reported in 205 patients (16%) in the chemotherapy-alone group and in 188 patients (14%) in the bevacizumab group (hazard ratio [HR] in stratified log-rank analysis 0·87, 95% CI 0·72-1·07; p=0·18). 3-year IDFS was 82·7% (95% CI 80·5-85·0) with chemotherapy alone and 83·7% (81·4-86·0) with bevacizumab and chemotherapy. After 200 deaths, no difference in overall survival was noted between the groups (HR 0·84, 95% CI 0·64-1·12; p=0·23). Exploratory biomarker assessment suggests that patients with high pre-treatment plasma VEGFR-2 might benefit from the addition of bevacizumab (Cox interaction test p=0·029). Use of bevacizumab versus chemotherapy alone was associated with increased incidences of grade 3 or worse hypertension (154 patients [12%] vs eight patients [1%]), severe cardiac events occurring at any point during the 18-month safety reporting period (19 [1%] vs two [<0·5%]), and treatment discontinuation (bevacizumab, chemotherapy, or both; 256 [20%] vs 30 [2%]); we recorded no increase in fatal adverse events with bevacizumab (four [<0·5%] vs three [<0·5%]). INTERPRETATION Bevacizumab cannot be recommended as adjuvant treatment in unselected patients with triple-negative breast cancer. Further follow-up is needed to assess the potential effect of bevacizumab on overall survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In acid tropical forest soils (pH < 5.5) increased mobility of aluminum might limit aboveground productivity. Therefore, we evaluated Al phytotoxicity of three native tree species of tropical montane forests in southern Ecuador. An hydroponic dose-response experiment was conducted. Seedlings of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson were treated with 0, 300, 600, 1200, and 2400 mu M Al and an organic layer leachate. Dose-response curves were generated for root and shoot morphologic properties to determine effective concentrations (EC). Shoot biomass and healthy leaf area decreased by 44 % to 83 % at 2400 mu M Al, root biomass did not respond (C. odorata), declined by 51 % (H. americanus), or was stimulated at low Al concentrations of 300 mu M (T. chrysantha). EC10 (i.e. reduction by 10 %) values of Al for total biomass were 315 mu M (C. odorata), 219 mu M (H. americanus), and 368 mu M (T. chrysantha). Helicarpus americanus, a fast growing pioneer tree species, was most sensitive to Al toxicity. Negative effects were strongest if plants grew in organic layer leachate, indicating limitation of plant growth by nutrient scarcity rather than Al toxicity. Al toxicity occurred at Al concentrations far above those in native organic layer leachate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To evaluate the safety, tolerability and bioactivity of ascending doses of MP0112, a designed ankyrin repeat protein (DARPin) that binds with high affinity to vascular endothelial growth factor-A (VEGF-A), in treatment-naive patients with exudative age-related macular degeneration (AMD). DESIGN Phase I/II, open-label, multicenter, dose-escalation study. METHODS Patients were to receive a single intravitreal injection of MP0112 at doses ranging from 0.04 to 3.6 mg and be monitored for 16 weeks for safety, efficacy, pharmacokinetics, and dose response. RESULTS Altogether, 32 patients received a single injection of MP0112. The maximum tolerated dose was 1.0 mg because of a case of endophthalmitis in the 2.0 mg cohort. Drug-related adverse events were reported by 13 (41%) of 32 patients; they included ocular inflammation in 11 patients (7 mild, 4 moderate in severity). Visual acuity scores were stable or improved compared with baseline for ≥4 weeks following injection; both retinal thickness and fluorescein angiography leakage decreased in a dose-dependent manner. Rescue therapy was administered to 20 (91%) of 22 patients who received 0.04-0.4 mg MP0112 compared with 4 of 10 (40%) patients who received 1.0 or 2.0 mg. Of patients in the higher-dose cohorts who did not require rescue treatment, 83% (5/6) maintained reductions in central retinal thickness through week 16. CONCLUSIONS A single injection of 1.0 or 2.0 mg MP0112 resulted in mean decreases in retinal thickness and leakage area despite ocular inflammation. Larger-scale studies are warranted to confirm these observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) are the backbone of osteoarthritis pain management. We aimed to assess the effectiveness of different preparations and doses of NSAIDs on osteoarthritis pain in a network meta-analysis. METHODS For this network meta-analysis, we considered randomised trials comparing any of the following interventions: NSAIDs, paracetamol, or placebo, for the treatment of osteoarthritis pain. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) and the reference lists of relevant articles for trials published between Jan 1, 1980, and Feb 24, 2015, with at least 100 patients per group. The prespecified primary and secondary outcomes were pain and physical function, and were extracted in duplicate for up to seven timepoints after the start of treatment. We used an extension of multivariable Bayesian random effects models for mixed multiple treatment comparisons with a random effect at the level of trials. For the primary analysis, a random walk of first order was used to account for multiple follow-up outcome data within a trial. Preparations that used different total daily dose were considered separately in the analysis. To assess a potential dose-response relation, we used preparation-specific covariates assuming linearity on log relative dose. FINDINGS We identified 8973 manuscripts from our search, of which 74 randomised trials with a total of 58 556 patients were included in this analysis. 23 nodes concerning seven different NSAIDs or paracetamol with specific daily dose of administration or placebo were considered. All preparations, irrespective of dose, improved point estimates of pain symptoms when compared with placebo. For six interventions (diclofenac 150 mg/day, etoricoxib 30 mg/day, 60 mg/day, and 90 mg/day, and rofecoxib 25 mg/day and 50 mg/day), the probability that the difference to placebo is at or below a prespecified minimum clinically important effect for pain reduction (effect size [ES] -0·37) was at least 95%. Among maximally approved daily doses, diclofenac 150 mg/day (ES -0·57, 95% credibility interval [CrI] -0·69 to -0·46) and etoricoxib 60 mg/day (ES -0·58, -0·73 to -0·43) had the highest probability to be the best intervention, both with 100% probability to reach the minimum clinically important difference. Treatment effects increased as drug dose increased, but corresponding tests for a linear dose effect were significant only for celecoxib (p=0·030), diclofenac (p=0·031), and naproxen (p=0·026). We found no evidence that treatment effects varied over the duration of treatment. Model fit was good, and between-trial heterogeneity and inconsistency were low in all analyses. All trials were deemed to have a low risk of bias for blinding of patients. Effect estimates did not change in sensitivity analyses with two additional statistical models and accounting for methodological quality criteria in meta-regression analysis. INTERPRETATION On the basis of the available data, we see no role for single-agent paracetamol for the treatment of patients with osteoarthritis irrespective of dose. We provide sound evidence that diclofenac 150 mg/day is the most effective NSAID available at present, in terms of improving both pain and function. Nevertheless, in view of the safety profile of these drugs, physicians need to consider our results together with all known safety information when selecting the preparation and dose for individual patients. FUNDING Swiss National Science Foundation (grant number 405340-104762) and Arco Foundation, Switzerland.