987 resultados para Dammann-grating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main task is to analyze the state of the art of grating couplers production and low-cost polymer substrates. Then to provide a recommendation of a new or adapted process for the production of metallic gratings on polymer sheets, based on a Failure Mode and Effect Analysis (FMEA). In order to achieve that, this thesis is divided into four chapters. After the first introductory chapter, the second section provides details about the state-of-the-art in optical technology platforms with focus on polymers and their main features for the aimed application, such as flexibility, low cost and roll to roll compatibility. It defines then the diffraction gratings and their specifications and closes with the explanation of adhesion mechanisms of inorganic materials on polymer substrates. The third chapter discusses processing of grating couplers. It introduces the basic fabrication methods and details a selection of current fabrication schemes found in literature with an assessment of their potential use for the desired application. The last chapter is a FMEA analysis of the retained fabrication process, called Flip and Fuse, in order to check its capability to realize the grating structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate a switchable dual-wavelength erbium-doped fibre ring laser. Competition between the lasing wavelengths in erbium-doped fibre laser at room temperature is suppressed by incorporating a two-channel fibre Bragg grating (TC-FBG), which consists of two highly localized sub-gratings fabricated by femtosecond laser in single mode fibre. Wavelengths and polarization states of the lasing lines are selected by the TC-FBG. Laser output can be switched between single- and dual-wavelength operations by simply adjusting the polarization controller. Stable dual-wavelength output is verified at room temperature with a power fluctuation less than 0.27 dB, and wavelength fluctuation less than 0.004 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafast laser owns extreme small beam size and high pulse intensity which enable spatial localised modification either on the surface or in the bulk of materials. Therefore, ultrafast laser has been widely used to micromachine optical fibres to alter optical structures. In order to do the precise control of the micromachining process to achieve the desired structure and modification, investigations on laser parameters control should be carried out to make better understanding of the effects in the laser micromachining process. These responses are important to laser machining, most of which are usually unknown during the process. In this work, we report the real time monitored results of the reflection of PMMA based optical fibre Bragg gratings (POFBGs) during excimer ultraviolet laser micromachining process. Photochemical and thermal effects have been observed during the process. The UV radiation was absorbed by the PMMA material, which consequently induced the modifications in both spatial structure and material properties of the POFBG. The POFBG showed a significant wavelength blue shift during laser micromachining. Part of it attributed to UV absorption converted thermal energy whilst the other did not disappear after POFBG cooling off, which attributed to UV induced photodegradation in POF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate, for the first time to our best knowledge, the use of a 45° tilted fiber grating (TFG) as an infiber lateral diffraction element in an efficient and fiber-compatible spectrally encoded imaging (SEI) system. Under proper polarization control, the TFG has significantly enhanced diffraction efficiency (93.5%) due to strong tilted reflection. Our conceptually new fiber-topics-based design eliminates the need for bulky and lossy free-space diffraction gratings, significantly reduces the volume and cost of the imaging system, improves energy efficiency, and increases system stability. As a proof-of-principle experiment, we use the proposed system to perform an one dimensional (1D) line scan imaging of a customer-designed three-slot sample and the results show that the constructed image matches well with the actual sample. The angular dispersion of the 45° TFG is measured to be 0.054°/nm and the lateral resolution of the SEI system is measured to be 28 μm in our experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water contamination can cause serious problems that compromise in transformer's safe operation and reduce its lifetime. Online monitoring of moisture concentration in transformer oil would permit the control of moisture buildup. This letter presents a direct optical measurement of moisture concentration in transformer oil using a poly(methyl methacrylate) (PMMA)-based optical fiber Bragg grating (POFBG). The refractive index and volume of PMMA-based optical fiber vary with the moisture in the surrounding transformer oil, changing the reflecting wavelength of the grating. A sensitivity of POFBG wavelength change to moisture content of 29 pm/ppm is demonstrated in this letter, indicating detectable water content better than 0.05 ppm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a highly sensitive ambient refractive index (RI) sensor based on 81° tilted fiber grating (81°-TFG) structure UV-inscribed in standard telecom fiber (62.5μm cladding radius) with carbon nanotube (CNT) overlay deposition. The sensing mechanism is based on the ability of CNT to induce change in transmitted optical power and the high sensitivity of 81°-TFG to ambient refractive index. The thin CNT film with high refractive index enhances the cladding modes of the TFG, resulting in the significant interaction between the propagating light and the surrounding medium. Consequently, the surrounding RI change will induce not only the resonant wavelength shift but also the power intensity change of the attenuation band in the transmission spectrum. Result shows that the change in transmitted optical power produces a corresponding linear reduction in intensity with increment in RI values. The sample shows high sensitivities of ∼207.38nm/RIU, ∼241.79nm/RIU at RI range 1.344-1.374 and ∼113.09nm/RIU, ∼144.40nm/RIU at RI range 1.374-1.392 (for X-pol and Y-pol respectively). It also shows power intensity sensitivity of ∼ 65.728dBm/RIU and ∼ 45.898 (for X-pol and Y-pol respectively). The low thermal sensitivity property of the 81°-TFG offers reduction in thermal cross-sensitivity and enhances specificity of the sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the simplification and development of biofunctionalization methodology based on one-step 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)-mediated reaction. The dual-peak long period grating (dLPG) has been demonstrated its inherent ultrahigh sensitivity to refractive index (RI), achieving 50-fold improvement in RI sensitivity over a standard LPG sensor used in low RI range. With the simple and efficient immobilization of unmodified oligonucleotides on sensor surface, dLPG-based biosensor has been used to monitor the hybridization of complementary oligonucleotides showing a detectable oligonucleotide concentration of 4 nM with the advantages of label-free, real-time, and ultrahigh sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 260 nm layer of organic bulk heterojunction blend of the polymer poly(3-hexylthiophene) (P3HT) and the fullerene [6,6]-phenyl C(61)-butyric (PCBM) was spin-coated in between aluminum and gold electrodes, respectively, on top of a laser inscribed azo polymer surface-relief diffraction grating. Angle-dependent surface plasmons (SPs) with a large band gap were observed in the normalized photocurrent by the P3HT-PCBM layer as a function of wavelength. The SP-induced photocurrents were also investigated as a function of the grating depth and spacing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel setup for imaging and interferometry through reflection holography with Bi12TiPO20(BTO) sillenite photorefractive crystals is proposed. A variation of the lensless Denisiuk arrangement was developed resulting in a compact, robust and simple interferometer. A red He-Ne laser was used as light source and the holographic recording occurred by diffusion with the grating vector parallel to the crystal [0 0 1]-axis. In order to enhance the holographic image quality and reduce noise a polarizing beam splitter (PBS) was positioned at the BTO input and the crystal was tilted around the [0 0 1]-axis. This enabled the orthogonally polarized transmission and diffracted beams to be separated by the PBS, providing the holographic image only. The possibility of performing deformation and strain analysis as well as vibration measurement of small objects was demonstrated. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sensitive near-resonant four-wave mixing technique based on two-photon parametric four-wave mixing has been developed. Seeded parametric four-wave mixing requires only a single laser as an additional phase matched seeder field is generated via parametric four-wave mixing of the pump beam in a high gain cell. The seeder field travels collinearly with the pump beam providing efficient nondegenerate four-wave mixing in a second medium. This simple arrangement facilitates the detection of complex molecular spectra by simply scanning the pump laser. Seeded parametric four-wave mixing is demonstrated in both a low pressure cell and an air/acetylene flame with detection of the two-photon C (2) Pi(upsilon'=0)<--X (2) Pi(upsilon =0) spectrum of nitric oxide. From the cell data a detection limit of 10(12) molecules/cm(3) is established. A theoretical model of seeded parametric four-wave mixing is developed from existing parametric four-wave mixing theory. The addition of the seeder field significantly modifies the parametric four-wave mixing behaviour such that in the small signal regime, the signal intensity can readily be made to scale as the cube of the laser pump power while the density dependence follows a more familiar square law dependence, In general, we find excellent agreement between theory and experiment. Limitations to the process result from an ac Stark shift of the two-photon resonance in the high pressure seeder cell caused by the generation of a strong seeder field, as well as a reduction in phase matching efficiency due to the presence of certain buffer species. Various optimizations are suggested which should overcome these limitations, providing even greater detection sensitivity. (C) 1998 American Institute of Physics, [S0021-9606(98)01014-9].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidimensional spatiotemporal parametric simultons (simultaneous solitary waves) are possible in a nonlinear chi((2)) medium with a Bragg grating structure, where large effective dispersion occurs near two resonant band gaps for the carrier and second-harmonic field, respectively. The enhanced dispersion allows much reduced interaction lengths, as compared to bulk medium parametric simultons. The nonlinear parametric band-gap medium permits higher-dimensional stationary waves to form. In addition, solitons can occur with lower input powers than conventional nonlinear Schrodinger equation gap solitons. In this paper, the equations for electromagnetic propagation in a grating structure with a parametric nonlinearity are derived from Maxwell's equation using a coupled mode Hamiltonian analysis in one, two, and three spatial dimensions. Simultaneous solitary wave solutions are proved to exist by reducing the equations to the coupled equations describing a nonlinear parametric waveguide, using the effective-mass approximation (EMA). Exact one-dimensional numerical solutions in agreement with the EMA solutions are also given. Direct numerical simulations show that the solutions have similar types of stability properties to the bulk case, providing the carrier waves are tuned to the two Bragg resonances, and the pulses have a width in frequency space less than the band gap. In summary, these equations describe a physically accessible localized nonlinear wave that is stable in up to 3 + 1 dimensions. Possible applications include photonic logic and switching devices. [S1063-651X(98)06109-1].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modulational instability in optical Bragg gratings with a quadratic nonlinearity is studied. The electric field in such structures consists of forward and backward propagating components at the fundamental frequency and its second harmonic. Analytic continuous wave (CW) solutions are obtained, and the intricate complexity of their stability, due to the large number of equations and number of free parameters, is revealed. The stability boundaries are rich in structures and often cannot be described by a simple relationship. In most cases, the CW solutions are unstable. However, stable regions are found in the nonlinear Schrodinger equation limit, and also when the grating strength for the second harmonic is stronger than that of the first harmonic. Stable CW solutions usually require a low intensity. The analysis is confirmed by directly simulating the governing equations. The stable regions found have possible applications in second-harmonic generation and dark solitons, while the unstable regions maybe useful in the generation of ultrafast pulse trains at relatively low intensities. [S1063-651X(99)03005-6].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simultaneous solitary wave solutions for laser propagation in nonlinear parametric media with up to (3 + 1) dimensions are proved to exist. The combination of the large dispersion of a Bragg grating and the strong nonlinearity of chi((2)) optical material results in stable behavior with short interaction distances and low power requirements. The solutions are obtained by using the effective mass approximation to reduce the coupled propagation equations to those describing a dispersive parametric nonlinear waveguide, and are verified by solving the complete set of coupled band-gap equations numerically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the fabrication of planar sub-micron gratings in silicon with a period of 720 nm using a modified Michelson interferometer and femtosecond laser radiation. The gratings consist of alternated stripes of laser ablated and unmodified material. Ablated stripes are bordered by parallel ridges which protrude above the unmodified material. In the regions where ridges are formed, the laser radiation intensity is not sufficient to cause ablation. Nevertheless, melting and a significant temperature increase are expected, and ridges may be formed due to expansion of silicon during resolidification or silicon oxidation. These conclusions are consistent with the evolution of the stripes morphology as a function of the distance from the center of the grating. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the fabrication of planar sub-micron gratings in silicon with a period of 720 nm using a modified Michelson interferometer and femtosecond laser radiation. The gratings consist of alternated stripes of laser ablated and unmodified material. Ablated stripes are bordered by parallel ridges which protrude above the unmodified material. In the regions where ridges are formed, the laser radiation intensity is not sufficient to cause ablation. Nevertheless, melting and a significant temperature increase are expected, and ridges may be formed due to expansion of silicon during resolidification or silicon oxidation. These conclusions are consistent with the evolution of the stripes morphology as a function of the distance from the center of the grating.