916 resultados para Crystal Structure, Brucine, Proton Transfer, Hydrogen Bonding, Citrates
Resumo:
The asymmetric unit of the title compound, C11H8N4, contains two independent molecules. In the crystal structure, intermolecular N—H.....N hydrogen bonds link molecules into ribbons extended in the [100] direction
Resumo:
We examine how the polypeptide chain in protein crystal structures exploits the multivalent hydrogen-bonding potential of bound water molecules. This shows that multiple interactions with a single water molecule tend to occur locally along the chain. A distinctive internal-coordinate representation of the local water-binding segments reveals several consensus conformations. The fractional water occupancy of each was found by comparison of the total number of conformations in the database regardless of the presence or absence of bound water. The water molecule appears particularly frequently in type II beta-turn geometries and an N-terminal helix feature. This work constitutes a first step into assessing not only the generality but also the significance of specific water binding in globular proteins.
Resumo:
The crystal structure of Cu(PM)2(N03hoH20 (where PM is pyridoxamine, CSHI2N202) has been determined from three dimensional x-ray diffraction data. The crystals are triclinic, space group pI, a = 14.248 (2), b = 8.568 (1), c = 9.319 (1) 1, a = 94.08 (1), e = 89.73 (1), y~~ 99.18 (1)°, z = 2, jl(MoK) = 10.90 em-I, Po = 1.61 g/cm3 and Pc = 1.61 g/em3• The structure a was solved by Patterson techniques from data collected on a Picker 4-circle diffractometer to 26max = 45°. All atoms, including hydrogens, have been located. Anisotropic thermal parameters have been refined for all nonhydrogen atoms. For the 2390 independent reflections with F ? 3cr(F) , R = 0.0408. The results presented here provide the first detailed structural information of a metal complex with PM itself. The copper atoms are located on centres of symmetry and each is chela ted by two PM zwitterions through the amino groups and phenolate oxygen atoms. The zwitterionic form found in this structure involves the loss of a proton from the phenolate group and protonation of the pyridine ring nitrogen atoms. The two independent Cu(PM)2 moieties are symmetrically bridged by a single oxygen atom from one of the nitrate groups. The second nitrate group is not coordinated to the copper atoms but is central to an extensive hydrogen bonding network involving the water molecule and uncoordinated functional groups of PM.
Resumo:
The x-ray crystal structure of thiamine hydroiodide,C1ZH18N40S12' has been determined. The unit cell parameters are a = 13.84 ± 0.03, o b = 7.44 ± 0.01, c = 20.24 ± 0.02 A, 8 = 120.52 ± 0.07°, space group P2/c, z = 4. A total of 1445 reflections having ,2 > 2o(F2), 26 < 40° were collected on a Picker four-circle diffractometer with MoKa radiation by the 26 scan technique. The structure was solved by the heavy atom method. The iodine and sulphur atoms were refined anisotropically; only the positional parameters were refined for the hydrogen atoms. Successive least squares cycles yielded an unweighted R factor of 0.054. The site of protonation of the pyrimidine ring is the nitrogen opposite the amino group. The overall structure conforms very closely to the structures of other related thiamine compounds. The bonding surrounding the iodine atoms is distorted tetrahedral. The iodine atoms make several contacts with surrounding atoms most of them at or near the van der Waal's distances A thiaminium tetrachlorocobaltate salt was produced whose molecular and crystal structure was j~dged to be isomorphous to thiaminium tetrachlorocadmate.
Resumo:
Noncovalent interactions play key roles in many natural processes leading to the self-assembly of molecules with the formation of supramolecular structures. One of the most important forces responsible for self-assembly is hydrogen bonding, which also plays an important role in the self-assembly of synthetic polymers in aqueous solutions. Proton-accepting polymers can associate with proton-donating polymers via hydrogen bonding in aqueous solutions and form polymer-polymer or interpolymer complexes. There has been an increased interest among researchers in hydrogen-bonded interpolymer complexes since the first pioneering papers were published in the early 1960s. Several hundred research papers have been published on various aspects of complex formation reactions in solutions and interfaces, properties of interpolymer complexes and their potential applications. This book focuses on the latest developments in the area of interpolymer complexation via hydrogen bonding. It represents a collection of original and review articles written by recognized experts from Germany, Greece, Kazakhstan, Poland, Romania, Russia, UK, Ukraine, and the USA. It highlights many important applications of interpolymer complexes, including the stabilization of colloidal systems, pharmaceuticals, and nanomaterials.
Resumo:
Co(NH3)(5)Cl]Cl-2 forms neutral 1:3 complex by reaction with aromatic thiohydrazides, i.e. thiobenzhydrazide, o-hydroxythiobenzhydrazide, thiophen-2-thiohydrazide and furan-2-thiohydrazide. All these complexes are diamagnetic and have been characterized by elemental analysis and combination of spectroscopic methods. Cyclic voltammometry of the complexes shows irreversible metal centered and ligand centered electron transfer reactions. One complex, tris-o-hydroxythiobenzhydrazidocobalt(III),has been crystallized from DMSO solution to produce solvated crystals and its structure has been established by X-ray crystallography. Cobalt(III) ion is linked through three hydrazinic nitrogen and three sulfur atoms of three identical deprotonated ligand molecules in a distorted octahedral environment. Involvement of -OH group in intramolecular and intermolecular hydrogen bonding is crucial for crystal formation.
Resumo:
The crystal structure of an indomethacin–nicotinamide (1 : 1) cocrystal produced by milling has been determined from laboratory powder X-ray diffraction (PXRD) data. The hydrogen bonding motifs observed in the structure represent one of the most probable of all the possible combinations of donors and acceptors in the constituent molecules.
Resumo:
A rational strategy was employed for design of an orthorhombic structure of lamivudine with maleic acid. On the basis of the lamivudine saccharinate structure reported in the literature, maleic acid was chosen to synthesize a salt with the anti-HIV drug because of the structural similarities between the salt formers. Maleic acid has an acid-ionization constant of the anti first proton and an arrangement of their hydrogen bonding functionalities similar to those of saccharin. Likewise, there is a saccharin-like conformational rigidity in maleic acid because of the hydrogen-bonded ring formation and the Z-configuration around the C=C double bond. As was conceivably predicted, lamivudine maleate assembles into a structure whose intermolecular architecture is related to that of saccharinate salt of the drug. Therefore, a molecular framework responsible for crystal assembly into a lamivudine saccharinate-like structure could be recognized in the salt formers. Furthermore, structural correlations and structure-solubility relationships were established for lamivudine maleate and saccharinate. Although there is a same molecular framework in maleic acid and saccharin, these salt formers are Structurally different in some aspects. When compared to saccharin, neither out-of-plane SO(2) oxygens nor a benzene group occur in maleic acid. Both features could be related to higher solubility of lamivudine maleate. Here, we also anticipate that multicomponent molecular crystals of lamivudine with other salt formers possessing the molecular framework responsible for crystal assembly can be engineered successfully.
Resumo:
In the treatment of cyclometallated dimer [Pd(dmba)(mu-Cl)](2) (dmba = N,N-dimethylbenzylamine) with AgNO(3) and acetonitrile the result was the monomeric cationic precursor [Pd(dmba)(NCMe)(2)](NO(3)) (NCMe=acetonitrile) (1). Compound 1 reacted with m-nitroaniline (m-NAN) and pirazine (pz), originating [Pd(dmba)(ONO(2))(m-NAN)] (2) and [{Pd(dmba)(ONO(2))}(2)(mu-pz)] center dot H(2)O (3), respectively. These compounds were characterized by elemental analysis, IR and NMR spectroscopy. The IR spectra of (2-3) display typical bands of monodentade O-bonded nitrate groups, whereas the NMR data of 3 are consistent with the presence of bridging pyrazine ligands. The structure of compound 3 was determined by Xray diffraction analysis. This packing consists of a supramolecular chain formed by hydrogen bonding between the water molecule and nitrato ligands of two consecutive [Pd(2)(dmba)(2)(ONO(2))2(mu-pz)] units. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The binding selectivity of the M(phen)(edda) (M = Cu, Co, Ni, Zn; phen = 1,10-phenanthroline, edda = ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(11) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N4O2 octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods.rnrnrnIn the case of the hydrogen storage system lithium amide/imide (LiNH_2/Li_2NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state 1H-NMR chemical shifts was observed. Specifically, the structure of Li_2NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus.rnrnOn the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding network in the material. The results indicate that these water molecules are essential for the effectiveness of proton conduction. A water-mediated Grotthuss mechanism is identified as the main contributor to proton conduction, which agrees with the experimentally observed decay on conductivity for the same material in the absence of water molecules.rnrnThe gain in understanding the microscopic processes and structures present in this materials can help the development of new materials with improved properties, thus contributing to the solution of problems in the implementation of fuel cells.
Resumo:
2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. The enzyme is a class I aldolase whose reaction mechanism involves formation of Schiff base intermediates between Lys-133 and a keto substrate. A covalent adduct was trapped by flash freezing KDPG aldolase crystals soaked with 10 mM pyruvate in acidic conditions at pH 4.6. Structure determination to 1.95-Å resolution showed that pyruvate had undergone nucleophilic attack with Lys-133, forming a protonated carbinolamine intermediate, a functional Schiff base precursor, which was stabilized by hydrogen bonding with active site residues. Carbinolamine interaction with Glu-45 indicates general base catalysis of several rate steps. Stereospecific addition is ensured by aromatic interaction of Phe-135 with the pyruvate methyl group. In the native structure, Lys-133 donates all of its hydrogen bonds, indicating the presence of an ɛ-ammonium salt group. Nucleophilic activation is postulated to occur by proton transfer in the monoprotonated zwitterionic pair (Glu-45/Lys-133). Formation of the zwitterionic pair requires prior side chain rearrangement by protonated Lys-133 to displace a water molecule, hydrogen bonded to the zwitterionic residues.
Resumo:
Paclitaxel (formerly called taxol), an important anticancer drug, inhibits cell replication by binding to and stabilizing microtubule polymers. As drug-receptor interactions are governed by the three-dimensional stereochemistries of both participants, we have determined the crystal structure of paclitaxel to identify its conformational preferences that may be related to biological activity. The monoclinic crystals contain two independent paclitaxel molecules in the asymmetric unit plus several water and dioxane solvent molecules. Taxane ring conformation is very similar in both paclitaxel molecules and is similar to the taxane ring conformation found in the crystal structure of the paclitaxel analogue docetaxel (formerly called taxotere). The two paclitaxel molecules have carbon-13 side-chain conformations that differ from each other and from that of the corresponding side chain in the docetaxel crystal structure. The carbon-13 side-chain conformation of one paclitaxel molecule is similar to what was proposed from NMR studies done in polar solvents, while that of the other paclitaxel molecule is different and hitherto unobserved. The paclitaxel molecules interact with each other and with solvent atoms through an extensive network of hydrogen bonds. Analysis of the hydrogen-bonding network together with structure-activity studies may suggest which atoms of paclitaxel are important for binding to microtubule receptors.
Resumo:
We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H2NC(CH3)3-n(CH2OH)n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family (n=0, 1, 2), but significantly contrasting structural properties for the member with n=3. © 2007 Elsevier Inc. All rights reserved.