865 resultados para Cricoids cartilage


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various studies have been conducted to investigate the effects of impact loading on cartilage damage and chondrocyte death. These have shown that the rate and magnitude of the applied strain significantly influence chondrocyte death, and that cell death occurred mostly in the superficial zone of cartilage suggesting the need to further understand the fundamental mechanisms underlying the chondrocytes death induced at certain levels of strain-rate. To date there is no comprehensive study providing insight on this phenomenon. The aim of this study is to examine the strain-rate dependent behavior of a single chondrocyte using a computational approach based on Finite Element Method (FEM). An FEM model was developed using various mechanical models, which were Standard Neo-Hookean Solid (SnHS), porohyperelastic (PHE) and poroviscohyperelastic (PVHE) to simulate Atomic Force Microscopy (AFM) experiments of chondrocyte. The PVHE showed, it can capture both relaxation and loading rate dependent behaviors of chondrocytes, accurately compared to other models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports that treatment of osseous defects with different growth factors initiates distinct rates of repair. We developed a new method for monitoring the progression of repair, based upon measuring the in vivo mechanical properties of healing bone. Two different members of the bone morphogenetic protein (BMP) family were chosen to initiate defect healing: BMP-2 to induce osteogenesis, and growth-and-differentiation factor (GDF)-5 to induce chondrogenesis. To evaluate bone healing, BMPs were implanted into stabilised 5 mm bone defects in rat femurs and compared to controls. During the first two weeks, in vivo biomechanical measurements showed similar values regardless of the treatment used. However, 2 weeks after surgery, the rhBMP-2 group had a substantial increase in stiffness, which was supported by the imaging modalities. Although the rhGDF-5 group showed comparable mechanical properties at 6 weeks as the rhBMP-2 group, the temporal development of regenerating tissues appeared different with rhGDF-5, resulting in a smaller callus and delayed tissue mineralisation. Moreover, histology showed the presence of cartilage in the rhGDF-5 group whereas the rhBMP-2 group had no cartilaginous tissue. Therefore, this study shows that rhBMP-2 and rhGDF-5 treated defects, under the same conditions, use distinct rates of bone healing as shown by the tissue mechanical properties. Furthermore, results showed that in vivo biomechanical method is capable of detecting differences in healing rate by means of change in callus stiffness due to tissue mineralisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project characterised the bone microarchitecture of adult mice lacking the hormone, acyl ghrelin, by high resolution micro-computed tomography; and investigated the expression of the ghrelin axis in cells of human and mouse fetal cartilage. This thesis highlights for the first time the physiological role of the ghrelin axis in the bone microenvironment of aged mice. Furthermore it improves our understanding of the complex expression patterns of the ghrelin axis in cartilage cells of human and mouse fetal skeletons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After attending this presentation, attendees will gain awareness of the ontogeny of cranial maturation, specifically: (1) the fusion timings of primary ossification centers in the basicranium; and (2) the temporal pattern of closure of the anterior fontanelle, to develop new population-specific age standards for medicolegal death investigation of Australian subadults. This presentation will impact the forensic science community by demonstrating the potential of a contemporary forensic subadult Computed Tomography (CT) database of cranial scans and population data, to recalibrate existing standards for age estimation and quantify growth and development of Australian children. This research welcomes a study design applicable to all countries faced with paucity in skeletal repositories. Accurate assessment of age-at-death of skeletal remains represents a key element in forensic anthropology methodology. In Australian casework, age standards derived from American reference samples are applied in light of scarcity in documented Australian skeletal collections. Currently practitioners rely on antiquated standards, such as the Scheuer and Black1 compilation for age estimation, despite implications of secular trends and population variation. Skeletal maturation standards are population specific and should not be extrapolated from one population to another, while secular changes in skeletal dimensions and accelerated maturation underscore the importance of establishing modern standards to estimate age in modern subadults. Despite CT imaging becoming the gold standard for skeletal analysis in Australia, practitioners caution the application of forensic age standards derived from macroscopic inspection to a CT medium, suggesting a need for revised methodologies. Multi-slice CT scans of subadult crania and cervical vertebrae 1 and 2 were acquired from 350 Australian individuals (males: n=193, females: n=157) aged birth to 12 years. The CT database, projected at 920 individuals upon completion (January 2014), comprises thin-slice DICOM data (resolution: 0.5/0.3mm) of patients scanned since 2010 at major Brisbane Childrens Hospitals. DICOM datasets were subject to manual segmentation, followed by the construction of multi-planar and volume rendering cranial models, for subsequent scoring. The union of primary ossification centers of the occipital bone were scored as open, partially closed or completely closed; while the fontanelles, and vertebrae were scored in accordance with two stages. Transition analysis was applied to elucidate age at transition between union states for each center, and robust age parameters established using Bayesian statistics. In comparison to reported literature, closure of the fontanelles and contiguous sutures in Australian infants occur earlier than reported, with the anterior fontanelle transitioning from open to closed at 16.7±1.1 months. The metopic suture is closed prior to 10 weeks post-partum and completely obliterated by 6 months of age, independent of sex. Utilizing reverse engineering capabilities, an alternate method for infant age estimation based on quantification of fontanelle area and non-linear regression with variance component modeling will be presented. Closure models indicate that the greatest rate of change in anterior fontanelle area occurs prior to 5 months of age. This study complements the work of Scheuer and Black1, providing more specific age intervals for union and temporal maturity of each primary ossification center of the occipital bone. For example, dominant fusion of the sutura intra-occipitalis posterior occurs before 9 months of age, followed by persistence of a hyaline cartilage tongue posterior to the foramen magnum until 2.5 years; with obliteration at 2.9±0.1 years. Recalibrated age parameters for the atlas and axis are presented, with the anterior arch of the atlas appearing at 2.9 months in females and 6.3 months in males; while dentoneural, dentocentral and neurocentral junctions of the axis transitioned from non-union to union at 2.1±0.1 years in females and 3.7±0.1 years in males. These results are an exemplar of significant sexual dimorphism in maturation (p<0.05), with girls exhibiting union earlier than boys, justifying the need for segregated sex standards for age estimation. Studies such as this are imperative for providing updated standards for Australian forensic and pediatric practice and provide an insight into skeletal development of this population. During this presentation, the utility of novel regression models for age estimation of infants will be discussed, with emphasis on three-dimensional modeling capabilities of complex structures such as fontanelles, for the development of new age estimation methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orthopaedics and Trauma Queensland, the Centre for Research and Education in Musculoskeletal Disorders, is an internationally recognised research group that continues to develop its reputation as an international leader in research and education. It provides a stimulus for research, education and clinical application within the international orthopaedic and trauma communities. Orthopaedics and Trauma Queensland develops and promotes the innovative use of engineering and technology, in collaboration with surgeons, to provide new techniques, materials, procedures and medical devices. Its integration with clinical practice and strong links with hospitals ensure that the research will be translated into practical outcomes for patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogels are promising materials for cartilage repair, but the properties required for optimal functional outcomes are not yet known. In this study, we functionalized four materials that are commonly used in cartilage tissue engineering and evaluated them using in vitro cultures. Gelatin, hyaluronic acid, polyethylene glycol, and alginate were functionalized with methacrylic anhydride to make them photocrosslinkable. We found that the responses of encapsulated human chondrocytes were highly dependent on hydrogel type. Gelatin hydrogels supported cell proliferation and the deposition of a glycosaminoglycan rich matrix with significant mechanical functionality. However, cells had a dedifferentiated phenotype, with high expression of collagen type I. Chondrocytes showed the best redifferentiation in hyaluronic acid hydrogels, but the newly formed matrix was highly localized to the pericellular regions, and these gels degraded rapidly. Polyethylene glycol hydrogels, as a bioinert control, did not promote any strong responses. Alginate hydrogels did not support the deposition of new matrix, and the stiffness decreased during culture. The markedly different response of chondrocytes to these four photocrosslinkable hydrogels demonstrates the importance of material properties for chondrogenesis and extracellular matrix production, which are critical for effective cartilage repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short-rib polydactyly syndromes (SRPS I-V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Certain mutations in ANKH, which encodes a multiple-pass transmembrane protein that regulates inorganic pyrophosphate (PPi) transport, are linked to autosomal-dominant familial chondrocalcinosis. This study investigated the potential for ANKH sequence variants to promote sporadic chondrocalcinosis. Methods ANKH variants identified by genomic sequencing were screened for association with chondrocalcinosis in 128 patients with severe sporadic chondrocalcinosis or pseudogout and in ethnically matched healthy controls. The effects of specific variants on expression of common markers were evaluated by in vitro transcription/translation. The function of these variants was studied in transfected human immortalized CH-8 articular chondrocytes. Results Sporadic chondrocalcinosis was associated with a G-to-A transition in the ANKH 5′-untranslated region (5′-UTR) at 4 bp upstream of the start codon (in homozygotes of the minor allele, genotype relative risk 6.0, P = 0.0006; overall genotype association P = 0.02). This -4-bp transition, as well as 2 mutations previously linked with familial and sporadic chondrocalcinosis (+14 bp C-to-T and C-terminal GAG deletion, respectively), but not the French familial chondrocalcinosis kindred 143-bp T-to-C mutation, increased reticulocyte ANKH transcription/ANKH translation in vitro. Transfection of complementary DNA for both the wild-type ANKH and the -4-bp ANKH protein variant promoted increased extracellular PPi in CH-8 cells, but unexpectedly, these ANKH mutants had divergent effects on the expression of extracellular PPi and the chondrocyte hypertrophy marker, type X collagen. Conclusion A subset of sporadic chondrocalcinosis appears to be heritable via a -4-bp G-to-A ANKH 5′-UTR transition that up-regulates expression of ANKH and extracellular PPi in chondrocyte cells. Distinct ANKH mutations associated with heritable chondrocalcinosis may promote disease by divergent effects on extracellular PPi and chondrocyte hypertrophy, which is likely to mediate differences in the clinical phenotypes and severity of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Ankylosing spondylitis (AS) is unique in its pathology where inflammation commences at the entheses before progressing to an osteoproliferative phenotype generating excessive bone formation that can result in joint fusion. The underlying mechanisms of this progression are poorly understood. Recent work has suggested that changes in Wnt signalling, a key bone regulatory pathway, may contribute to joint ankylosis in AS. Using the proteoglycan-induced spondylitis (PGISp) mouse model which displays spondylitis and eventual joint fusion following an initial inflammatory stimulus, we have characterised the structural and molecular changes that underlie disease progression. Methods: PGISp mice were characterised 12 weeks after initiation of inflammation using histology, immunohistochemistry (IHC) and expression profiling. Results: Inflammation initiated at the periphery of the intervertebral discs progressing to disc destruction followed by massively excessive cartilage and bone matrix formation, as demonstrated by toluidine blue staining and IHC for collagen type I and osteocalcin, leading to syndesmophyte formation. Expression levels of DKK1 and SOST, Wnt signalling inhibitors highly expressed in joints, were reduced by 49% and 63% respectively in the spine PGISp compared with control mice (P < 0.05) with SOST inhibition confirmed by IHC. Microarray profiling showed genes involved in inflammation and immune-regulation were altered. Further, a number of genes specifically involved in bone regulation including other members of the Wnt pathway were also dysregulated. Conclusions: This study implicates the Wnt pathway as a likely mediator of the mechanism by which inflammation induces bony ankylosis in spondyloarthritis, raising the potential that therapies targeting this pathway may be effective in preventing this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: A number of genetic-association studies have identified genes contributing to ankylosing spondylitis (AS) susceptibility but such approaches provide little information as to the gene activity changes occurring during the disease process. Transcriptional profiling generates a 'snapshot' of the sampled cells' activity and thus can provide insights into the molecular processes driving the disease process. We undertook a whole-genome microarray approach to identify candidate genes associated with AS and validated these gene-expression changes in a larger sample cohort. Methods: A total of 18 active AS patients, classified according to the New York criteria, and 18 gender- and age-matched controls were profiled using Illumina HT-12 whole-genome expression BeadChips which carry cDNAs for 48,000 genes and transcripts. Class comparison analysis identified a number of differentially expressed candidate genes. These candidate genes were then validated in a larger cohort using qPCR-based TaqMan low density arrays (TLDAs). Results: A total of 239 probes corresponding to 221 genes were identified as being significantly different between patients and controls with a P-value <0.0005 (80% confidence level of false discovery rate). Forty-seven genes were then selected for validation studies, using the TLDAs. Thirteen of these genes were validated in the second patient cohort with 12 downregulated 1.3- to 2-fold and only 1 upregulated (1.6-fold). Among a number of identified genes with well-documented inflammatory roles we also validated genes that might be of great interest to the understanding of AS progression such as SPOCK2 (osteonectin) and EP300, which modulate cartilage and bone metabolism. Conclusions: We have validated a gene expression signature for AS from whole blood and identified strong candidate genes that may play roles in both the inflammatory and joint destruction aspects of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the role of two genes, ANKH and TNAP, in patients with cuff tear arthropathy. These genes encode proteins which regulate the extracellular concentration of inorganic pyrophosphate, fluctuations of which can lead to calcium crystal formation. Variants were detected by direct sequencing of DNA and their frequencies compared with healthy controls. The effect of variants on protein function was further studied by in vitro approaches. Variant genotypes were observed more frequently in the cases when compared with controls in ANKH (45% and 20%) and TNAP (32% and 9%). Variants in ANKH altered inorganic pyrophosphate (PPi) concentrations in transfected human chondrocytes. There was a higher mean serum concentration of TNAP detected in female patients compared with normal ranges. Cuff tear arthropathy is associated with variants in ANKH and TNAP that alter extracellular inorganic pyrophosphate concentrations causing calcium crystal deposition. This supports a theory that genetic variants predispose patients to primary crystal deposition which when combined with a massive rotator cuff tear leads to the development of arthritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) has been applied for high resolution imaging of articular cartilage. However, the contribution of individual structural elements of cartilage on OCT signal has not been thoroughly studied. We hypothesize that both collagen and chondrocytes, essential structural components of cartilage, act as important light scatterers and that variation in their concentrations can be detected by OCT through changes in backscattering and attenuation. To evaluate this hypothesis, we established a controlled model system using agarose scaffolds embedded with variable collagen concentrations and chondrocyte densities. Using OCT, we measured the backscattering coefficient (µb) and total attenuation coefficient (µt) in these scaffolds. Along our hypothesis, light backscattering and attenuation in agarose were dependent on collagen concentration and chondrocyte density. Significant correlations were found between µt and chondrocyte density (ρ = 0.853, p < 0.001) and between µt and collagen concentration (ρ = 0.694, p < 0.001). µb correlated significantly with chondrocyte density (ρ = 0.504, p < 0.001) but not with collagen concentration (ρ = 0.103, p = 0.422) of the scaffold. Thus, quantitation of light backscattering and, especially, attenuation could be valuable when evaluating the integrity of soft tissues, such as articular cartilage with OCT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose During in vitro chondrogenesis of human mesenchymal stem cells (hMSCs) hypertrophy is an inadvertent event associated with cell differentiation toward the osteogenic lineage. Up to now, there is no stringent experimental control mechanism to prevent hypertrophy of MSCs. Microgravity is known to have an impact on osteogenesis. In this study, the influence of simulated microgravity (SMG) on both chondrogenesis and hypertrophy of hMSCs was evaluated. Methods A bioreactor using a rotating wall vessel was constructed to simulate microgravity. Pellet cultures formed from hMSCs (P5) were supplemented with human transforming growth factor-β3 (TGF-β3). The hMSC pellet cultures treated with TGF-β3 were either kept in SMG or in a control system. After three weeks of culture, the chondrogenic differentiation status and level of hypertrophy were examined by safranin-O staining, immunohistochemistry and quantitative real-time PCR. Results SMG reduced the staining for safranin-O and collagen type II. The expression of collagen type X α1 chain (COL10A1) and collagen type II α1 chain (COL2A1) were both significantly reduced. There was a higher decrease in COL2A1 than in COL10A1 expression, resulting in a low COL2A1/COL10A1 ratio. Conclusions SMG reduced hypertrophy of hMSCs during chondrogenic differentiation. However, the expression of COL2A1 was likewise reduced. Even more, the COL2A1/COL10A1 ratio decreased under SMG conditions. We therefore assume that SMG has a significant impact on the chondrogenic differentiation of hMSCs. However, due to the high COL2A1 suppression under SMG, this culture system does not yet seem to be suitable for a potential application in cartilage repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Additive manufacturing forms a potential route towards economically viable production of cellular constructs for tissue engineering. Hydrogels are a suitable class of materials for cell delivery and 3D culture, but are generally unsuitable as construction materials. Gelatine-methacrylamide is an example of such a hydrogel system widely used in the field of tissue engineering, e.g. for cartilage and cardiovascular applications. Here we show that by the addition of gellan gum to gelatine-methacrylamide and tailoring salt concentrations, rheological properties such as pseudo-plasticity and yield stress can be optimised towards gel dispensing for additive manufacturing processes. In the hydrogel formulation, salt is partly substituted by mannose to obtain isotonicity and prevent a reduction in cell viability. With this, the potential of this new bioink for additive tissue manufacturing purposes is demonstrated.