888 resultados para Combining ability
Resumo:
Recently, several belief negotiation models have been introduced to deal with the problem of belief merging. A negotiation model usually consists of two functions: a negotiation function and a weakening function. A negotiation function is defined to choose the weakest sources and these sources will weaken their point of view using a weakening function. However, the currently available belief negotiation models are based on classical logic, which makes them difficult to define weakening functions. In this paper, we define a prioritized belief negotiation model in the framework of possibilistic logic. The priority between formulae provides us with important information to decide which beliefs should be discarded. The problem of merging uncertain information from different sources is then solved by two steps. First, beliefs in the original knowledge bases will be weakened to resolve inconsistencies among them. This step is based on a prioritized belief negotiation model. Second, the knowledge bases obtained by the first step are combined using a conjunctive operator which may have a reinforcement effect in possibilistic logic.
Resumo:
Throughout the last few decades, sulfate concentrations in streamwater have received considerable attention due to their dominant role in anthropogenic acidification of surface waters. The objectives of this study conducted in the Oldman River Basin in Alberta (Canada) were to determine the influence of geology, land use and anthropogenic activities on sources, concentrations and fluxes of riverine sulfate on a watershed scale. This was achieved by combining hydrological, chemical and isotopic techniques. Surface water samples were collected from the main stem and tributaries of the Oldman River on a monthly basis between December 2000 and March 2003 and analyzed for chemical and isotopic compositions. At a given sampling site, sulfate sources were primarily dependent on geology and did not vary with time or flow condition. With increasing flow distance a gradual shift from ?34S values > 10 ‰ and ?18O values > 0 ‰ of riverine sulfate indicating evaporite dissolution and soil-derived sulfate in the predominantly forested headwaters, to negative ?34S and ?18O values suggested that sulfide oxidation was the predominant sulfate source in the agriculturally used downstream part of the watershed. Significant increases in sulfate concentrations and fluxes with downstream distance were observed, and were attributed to anthropogenically enhanced sulfide oxidation due to the presence of an extensive irrigation drainage network with seasonally varying water levels. Sulfate-S exports in an artificially drained subbasin (64 kg S/ha/yr) were found to exceed those in a naturally drained subbasin (4 kg S/ha/yr) by an order of magnitude. Our dataset suggests that the naturally occurring process of sulfide oxidation has been enhanced in the Oldman River Basin by the presence of an extensive network of drainage and irrigation canals.
Resumo:
Dealing with uncertainty problems in intelligent systems has attracted a lot of attention in the AI community. Quite a few techniques have been proposed. Among them, the Dempster-Shafer theory of evidence (DS theory) has been widely appreciated. In DS theory, Dempster's combination rule plays a major role. However, it has been pointed out that the application domains of the rule are rather limited and the application of the theory sometimes gives unexpected results. We have previously explored the problem with Dempster's combination rule and proposed an alternative combination mechanism in generalized incidence calculus. In this paper we give a comprehensive comparison between generalized incidence calculus and the Dempster-Shafer theory of evidence. We first prove that these two theories have the same ability in representing evidence and combining DS-independent evidence. We then show that the new approach can deal with some dependent situations while Dempster's combination rule cannot. Various examples in the paper show the ways of using generalized incidence calculus in expert systems.
Resumo:
Waste glycerol was converted to secondary amines in a one pot reaction, using Clostridium butyricum and catalytic hydrogen transfer-mediated amination.
Resumo:
A power combining strategy for Class-E and inverse Class-E amplifiers operating at high frequencies such that they can operate into unbalanced loads is proposed. This power combining method is particularly important for the inverse Class-E amplifier configuration whose single-stage topology is naturally limited for small-to-medium power applications. Design examples for the power combining synthesis of classical Class-E and then inverse Class-E amplifiers with specification 3 V-1.5 W-2.5 GHz are given. For this specification, it is shown that a three-branch combiner has a natural 50 V output impedance. The resulting circuits are simulated within Agilent Advanced Design Systems environment with good agreement to theoretical prediction. Further the performance of the proposed circuits when operated in a Linear amplification using Nonlinear Components transmitter configuration whereby two-branch amplifiers are driven with constant amplitude conjugate input phase signals is investigated.
Resumo:
The use of self-compacting concrete (SCC) facilitates the placing of concrete by eliminating the need for compaction by vibration. Given the highly flowable nature of such concrete, care is required to ensure excellent filling ability and adequate stability. This is especially important in deep structural members and wall elements where concrete can block the flow, segregate and exhibit bleeding and settlement which can result in local defects that can reduce mechanical properties, durability and quality of surface finish. This paper shows results of an investigation of fresh properties of self-compacting concrete, such as filling ability measured by slump flow and flow time (measured by Orimet) and plastic fresh settlement measured in a column. The SCC mixes incorporated various combinations of fine inorganic powders and admixtures. The slump flow of all SCCs was greater than 580 mm and the time in which the slumping concrete reached 500 rnm was less than 3 s. The flow time was less than 5 s. The results on SCCs were compared to a control mix. The compressive strength and splitting tensile strength of SCCs were also measured. The effects of water/powder ratio, slump and nature of the sand on the fresh settlement were also evaluated. The volume of coarse aggregate and the dosage of superphsticizer were kept constant. It can be concluded that the settlement of fresh self-compacting concrete increased with the increase in water/powder ratio and slump. The nature of sand influenced the maximum settlement.