867 resultados para Cold-formed Steel structures


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The field emissions from three different types of carbon films are studied using a Kiethly voltage-current source-measure unit under computer control. The three types of carbon films are : 1) a-C:H:N deposited using an inductively coupled rf PECVD process, where the N content in the films can be as high as 30 at %; 2) cathodic arc deposited tetrahedral amorphous carbon with embedded regions of carbon nanotube and anion structures and 3) unoriented carbon nanotube films on a porous substrate. The films are formed by filtering a solution of nanotubes dispersed in alcohol through the pores and drying.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Well-defined complex quantum ring structures formed by droplet epitaxy are demonstrated. By varying the temperature of the crystallizing Ga droplets and changing the As flux, GaAs/AlGaAs quantum single rings and concentric quantum double rings are fabricated, and double-ring complexes are observed. The growth mechanism of these quantum ring complexes is addressed. (c) 2006 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electronic structures of quantum wires formed by lateral strain are studied in the framework of the effective-mass envelope-function method. The hole energy levels, wave functions, and optical transition matrix elements are calculated for the real quantum-wire structure, and the results are compared with experiment. It is found that one-dimensional confinement effects exist for both electronic and hole states related to the n (001) = 1 state. The lateral strained confinement causes luminescence-peak redshifts and polarization anisotropy, and the anisotropy is more noticeable than that in the unstrained case. The variation of hole energy levels with well widths in the [110] and [001] directions and wave vector along the [110BAR] direction are also obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34 degrees N and 35 degrees N, 122 degrees E and 124 degrees E) of the Yellow Sea is mainly occupied by relatively high temperature water (T > 10 degrees C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T < 10 degrees C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34 degrees N and 37 degrees N, 123 degrees E and 126 degrees E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Corrosion represents one of the largest through life cost component of ships. Ship owners and operators recognize that combating corrosion significantly impacts the vessels’ reliability, availability and through life costs. Primary objective of this paper is to review various inspections, monitoring systems and life cycle management with respect to corrosion control of ships and to develop the concept of “Corrosion Health” (CH) which would quantify the extent of corrosion at any point of ships’ operational life. A system approach in which the ship structure is considered as a corrosion system and divided into several corrosion zones, with distinct characteristics, is presented. Various corrosion assessment criteria for assessment of corrosion condition are listed. A CH rating system for representation of complex corrosion condition with a numeric number along with recommendations for repair/maintenance action is also discussed

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Foams are cellular structures, produced by gas bubbles formed during the polyurethane polymerization mixture. Flexible PU foams meet the following two criteria: have a limited resistance to an applied load, being both permeable to air and reversibly deformable. There are two main types of flexible foams, hot and cold cure foams differing in composition and processing temperatures. The hot cure foams are widely applied and represent the main composition of actual foams, while cold cure foams present several processing and property advantages, e.g, faster demoulding time, better humid aging properties and more versatility, as hardness variation with index changes are greater than with hot cure foams. The processing of cold cure foams also is attractive due to the low energy consumption (mould temperature from 30 degrees to 65 degrees C) comparatively to hot cure foams (mould temperature from 30 degrees to 250 degrees C). Another advantage is the high variety of soft materials for low temperature processing moulds. Cold cure foams are diphenylmethane diisocyanate (MDI) based while hot cure foams are toluene diisocyanate (TDI) based. This study is concerned with Viscoelastic flexible foams MDI based for medical applications. Differential Scanning Calorimetry (DSC) was used to characterize the cure kinetics and Dynamical Mechanical Analisys to collect mechanical data. The data obtained from these two experimental procedures were analyzed and associated to establish processing/properties/operation conditions relationships. These maps for the selection of optimized processing/properties/operation conditions are important to achieve better final part properties at lower costs and lead times.