906 resultados para Classical measurement error model
Resumo:
Preservation of rivers and water resources is crucial in most environmental policies and many efforts are made to assess water quality. Environmental monitoring of large river networks are based on measurement stations. Compared to the total length of river networks, their number is often limited and there is a need to extend environmental variables that are measured locally to the whole river network. The objective of this paper is to propose several relevant geostatistical models for river modeling. These models use river distance and are based on two contrasting assumptions about dependency along a river network. Inference using maximum likelihood, model selection criterion and prediction by kriging are then developed. We illustrate our approach on two variables that differ by their distributional and spatial characteristics: summer water temperature and nitrate concentration. The data come from 141 to 187 monitoring stations in a network on a large river located in the Northeast of France that is more than 5000 km long and includes Meuse and Moselle basins. We first evaluated different spatial models and then gave prediction maps and error variance maps for the whole stream network.
Resumo:
The main goal of this article is to consider influence assessment in models with error-prone observations and variances of the measurement errors changing across observations. The techniques enable to identify potential influential elements and also to quantify the effects of perturbations in these elements on some results of interest. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease.
Resumo:
Measurement-based quantum computation is an efficient model to perform universal computation. Nevertheless, theoretical questions have been raised, mainly with respect to realistic noise conditions. In order to shed some light on this issue, we evaluate the exact dynamics of some single-qubit-gate fidelities using the measurement-based quantum computation scheme when the qubits which are used as a resource interact with a common dephasing environment. We report a necessary condition for the fidelity dynamics of a general pure N-qubit state, interacting with this type of error channel, to present an oscillatory behavior, and we show that for the initial canonical cluster state, the fidelity oscillates as a function of time. This state fidelity oscillatory behavior brings significant variations to the values of the computational results of a generic gate acting on that state depending on the instants we choose to apply our set of projective measurements. As we shall see, considering some specific gates that are frequently found in the literature, the fast application of the set of projective measurements does not necessarily imply high gate fidelity, and likewise the slow application thereof does not necessarily imply low gate fidelity. Our condition for the occurrence of the fidelity oscillatory behavior shows that the oscillation presented by the cluster state is due exclusively to its initial geometry. Other states that can be used as resources for measurement-based quantum computation can present the same initial geometrical condition. Therefore, it is very important for the present scheme to know when the fidelity of a particular resource state will oscillate in time and, if this is the case, what are the best times to perform the measurements.
Resumo:
Aspects related to the users' cooperative work are not considered in the traditional approach of software engineering, since the user is viewed independently of his/her workplace environment or group, with the individual model generalized to the study of collective behavior of all users. This work proposes a process for software requirements to address issues involving cooperative work in information systems that provide distributed coordination in the users' actions and the communication among them occurs indirectly through the data entered while using the software. To achieve this goal, this research uses ergonomics, the 3C cooperation model, awareness and software engineering concepts. Action-research is used as a research methodology applied in three cycles during the development of a corporate workflow system in a technological research company. This article discusses the third cycle, which corresponds to the process that deals with the refinement of the cooperative work requirements with the software in actual use in the workplace, where the inclusion of a computer system changes the users' workplace, from the face to face interaction to the interaction mediated by the software. The results showed that the highest degree of users' awareness about their activities and other system users contribute to a decrease in their errors and in the inappropriate use of the system.
Resumo:
Since the development of quantum mechanics it has been natural to analyze the connection between classical and quantum mechanical descriptions of physical systems. In particular one should expect that in some sense when quantum mechanical effects becomes negligible the system will behave like it is dictated by classical mechanics. One famous relation between classical and quantum theory is due to Ehrenfest. This result was later developed and put on firm mathematical foundations by Hepp. He proved that matrix elements of bounded functions of quantum observables between suitable coherents states (that depend on Planck's constant h) converge to classical values evolving according to the expected classical equations when h goes to zero. His results were later generalized by Ginibre and Velo to bosonic systems with infinite degrees of freedom and scattering theory. In this thesis we study the classical limit of Nelson model, that describes non relativistic particles, whose evolution is dictated by Schrödinger equation, interacting with a scalar relativistic field, whose evolution is dictated by Klein-Gordon equation, by means of a Yukawa-type potential. The classical limit is a mean field and weak coupling limit. We proved that the transition amplitude of a creation or annihilation operator, between suitable coherent states, converges in the classical limit to the solution of the system of differential equations that describes the classical evolution of the theory. The quantum evolution operator converges to the evolution operator of fluctuations around the classical solution. Transition amplitudes of normal ordered products of creation and annihilation operators between coherent states converge to suitable products of the classical solutions. Transition amplitudes of normal ordered products of creation and annihilation operators between fixed particle states converge to an average of products of classical solutions, corresponding to different initial conditions.
Resumo:
Sowohl in der Natur als auch in der Industrie existieren thermisch induzierte Strömungen. Von Interesse für diese Forschungsarbeit sind dabei die Konvektionen im Erdmantel sowie in den Glasschmelzwannen. Der dort stattfindende Materialtransport resultiert aus Unterschieden in der Dichte, der Temperatur und der chemischen Konzentration innerhalb des konvektierenden Materials. Um das Verständnis für die ablaufenden Prozesse zu verbessern, werden von zahlreichen Forschergruppen numerische Modellierungen durchgeführt. Die Verifikation der dafür verwendeten Algorithmen erfolgt meist über die Analyse von Laborexperimenten. Im Vordergrund dieser Forschungsarbeit steht die Entwicklung einer Methode zur Bestimmung der dreidimensionalen Temperaturverteilung für die Untersuchung von thermisch induzierten Strömungen in einem Versuchsbecken. Eine direkte Temperaturmessung im Inneren des Versuchsmaterials bzw. der Glasschmelze beeinflusst allerdings das Strömungsverhalten. Deshalb wird die geodynamisch störungsfrei arbeitende Impedanztomographie verwendet. Die Grundlage dieser Methode bildet der erweiterte Arrhenius-Zusammenhang zwischen Temperatur und spezifischer elektrischer Leitfähigkeit. Während der Laborexperimente wird ein zähflüssiges Polyethylenglykol-Wasser-Gemisch in einem Becken von unten her erhitzt. Die auf diese Weise generierten Strömungen stellen unter Berücksichtigung der Skalierung ein Analogon sowohl zu dem Erdmantel als auch zu den Schmelzwannen dar. Über mehrere Elektroden, die an den Beckenwänden installiert sind, erfolgen die geoelektrischen Messungen. Nach der sich anschließenden dreidimensionalen Inversion der elektrischen Widerstände liegt das Modell mit der Verteilung der spezifischen elektrischen Leitfähigkeit im Inneren des Versuchsbeckens vor. Diese wird mittels der erweiterten Arrhenius-Formel in eine Temperaturverteilung umgerechnet. Zum Nachweis der Eignung dieser Methode für die nichtinvasive Bestimmung der dreidimensionalen Temperaturverteilung wurden mittels mehrerer Thermoelemente an den Beckenwänden zusätzlich direkte Temperaturmessungen durchgeführt und die Werte miteinander verglichen. Im Wesentlichen sind die Innentemperaturen gut rekonstruierbar, wobei die erreichte Messgenauigkeit von der räumlichen und zeitlichen Auflösung der Gleichstromgeoelektrik abhängt.
Resumo:
The goal of this thesis was an experimental test of an effective theory of strong interactions at low energy, called Chiral Perturbation Theory (ChPT). Weak decays of kaon mesons provide such a test. In particular, K± → π±γγ decays are interesting because there is no tree-level O(p2) contribution in ChPT, and the leading contributions start at O(p4). At this order, these decays include one undetermined coupling constant, ĉ. Both the branching ratio and the spectrum shape of K± → π±γγ decays are sensitive to this parameter. O(p6) contributions to K± → π±γγ ChPT predict a 30-40% increase in the branching ratio. From the measurement of the branching ratio and spectrum shape of K± → π±γγ decays, it is possible to determine a model dependent value of ĉ and also to examine whether the O(p6) corrections are necessary and enough to explain the rate.About 40% of the data collected in the year 2003 by the NA48/2 experiment have been analyzed and 908 K± → π±γγ candidates with about 8% background contamination have been selected in the region with z = mγγ2/mK2 ≥ 0.2. Using 5,750,121 selected K± → π±π0 decays as normalization channel, a model independent differential branching ratio of K± → π±γγ has been measured to be:BR(K± → π±γγ, z ≥ 0.2) = (1.018 ± 0.038stat ± 0.039syst ± 0.004ext) ∙10-6. From the fit to the O(p6) ChPT prediction of the measured branching ratio and the shape of the z-spectrum, a value of ĉ = 1.54 ± 0.15stat ± 0.18syst has been extracted. Using the measured ĉ value and the O(p6) ChPT prediction, the branching ratio for z =mγγ2/mK2 <0.2 was computed and added to the measured result. The value obtained for the total branching ratio is:BR(K± → π±γγ) = (1.055 ± 0.038stat ± 0.039syst ± 0.004ext + 0.003ĉ -0.002ĉ) ∙10-6, where the last error reflects the uncertainty on ĉ.The branching ratio result presented here agrees with previous experimental results, improving the precision of the measurement by at least a factor of five. The precision on the ĉ measurement has been improved by approximately a factor of three. A slight disagreement with the O(p6) ChPT branching ratio prediction as a function of ĉ has been observed. This mightrnbe due to the possible existence of non-negligible terms not yet included in the theory. Within the scope of this thesis, η-η' mixing effects in O(p4) ChPT have also been measured.
Resumo:
Precision measurements of observables in neutron beta decay address important open questions of particle physics and cosmology. In this thesis, a measurement of the proton recoil spectrum with the spectrometer aSPECT is described. From this spectrum the antineutrino-electron angular correlation coefficient a can be derived. In our first beam time at the FRM II in Munich, background instabilities prevented us from presenting a new value for a. In the latest beam time at the ILL in Grenoble, the background has been reduced sufficiently. As a result of the data analysis, we identified and fixed a problem in the detector electronics which caused a significant systematic error. The aim of the latest beam time was a new value for a with an error well below the present literature value of 4%. A statistical accuracy of about 1.4% was reached, but we could only set upper limits on the correction of the problem in the detector electronics, too high to determine a meaningful result. This thesis focused on the investigation of different systematic effects. With the knowledge of the systematics gained in this thesis, we are able to improve aSPECT to perform a 1% measurement of a in a further beam time.
Resumo:
Modern imaging technologies, such as computed tomography (CT) techniques, represent a great challenge in forensic pathology. The field of forensics has experienced a rapid increase in the use of these new techniques to support investigations on critical cases, as indicated by the implementation of CT scanning by different forensic institutions worldwide. Advances in CT imaging techniques over the past few decades have finally led some authors to propose that virtual autopsy, a radiological method applied to post-mortem analysis, is a reliable alternative to traditional autopsy, at least in certain cases. The authors investigate the occurrence and the causes of errors and mistakes in diagnostic imaging applied to virtual autopsy. A case of suicide by a gunshot wound was submitted to full-body CT scanning before autopsy. We compared the first examination of sectional images with the autopsy findings and found a preliminary misdiagnosis in detecting a peritoneal lesion by gunshot wound that was due to radiologist's error. Then we discuss a new emerging issue related to the risk of diagnostic failure in virtual autopsy due to radiologist's error that is similar to what occurs in clinical radiology practice.
Resumo:
Brain functions, such as learning, orchestrating locomotion, memory recall, and processing information, all require glucose as a source of energy. During these functions, the glucose concentration decreases as the glucose is being consumed by brain cells. By measuring this drop in concentration, it is possible to determine which parts of the brain are used during specific functions and consequently, how much energy the brain requires to complete the function. One way to measure in vivo brain glucose levels is with a microdialysis probe. The drawback of this analytical procedure, as with many steadystate fluid flow systems, is that the probe fluid will not reach equilibrium with the brain fluid. Therefore, brain concentration is inferred by taking samples at multiple inlet glucose concentrations and finding a point of convergence. The goal of this thesis is to create a three-dimensional, time-dependent, finite element representation of the brainprobe system in COMSOL 4.2 that describes the diffusion and convection of glucose. Once validated with experimental results, this model can then be used to test parameters that experiments cannot access. When simulations were run using published values for physical constants (i.e. diffusivities, density and viscosity), the resulting glucose model concentrations were within the error of the experimental data. This verifies that the model is an accurate representation of the physical system. In addition to accurately describing the experimental brain-probe system, the model I created is able to show the validity of zero-net-flux for a given experiment. A useful discovery is that the slope of the zero-net-flux line is dependent on perfusate flow rate and diffusion coefficients, but it is independent of brain glucose concentrations. The model was simplified with the realization that the perfusate is at thermal equilibrium with the brain throughout the active region of the probe. This allowed for the assumption that all model parameters are temperature independent. The time to steady-state for the probe is approximately one minute. However, the signal degrades in the exit tubing due to Taylor dispersion, on the order of two minutes for two meters of tubing. Given an analytical instrument requiring a five μL aliquot, the smallest brain process measurable for this system is 13 minutes.
Resumo:
Research on the physiological adaptation process has found that stress is associated with the rate of cortisol secretion, the main hormone that reflects stress. However, considerable variation among subjects has been reported. Using a sample of older adults (N=46), we tested the hypothesis that cortisol reactivity is composed of (1) a situation-related component representing hypothalamic influence on cortisol secretion observed on three different occasions, and (2) a stable component representing a general trait responsible for cortisol responses observed from occasion to occasion. LISREL VIII was used to test this hypothesis. Results indicated that a homogeneous reliability model was not supported by the data. A congeneric measurement model represented a better fit to the data. Results suggest that subjects have consistent patterns of response during separate experimental occasions. However, results do not suggest a consistent pattern of response over time. The main implication of these results is that salivary cortisol measures are sensitive to experimental stress situations. As such, this noninvasive method may be useful in examining adaptive responses to stress.