966 resultados para Cause of injury
Resumo:
Background: Bronchopulmonary dysplasia (BPD) remains the leading cause of chronic pulmonary morbidity among preterm neonates. However, the exact pathophysiology is still unknown. Here we present the first results from a new model inteAbstracts, 25th International Workshop on Surfactant Replacement 400 Neonatology 2010;97:395-400 grating the most common risk factors for BPD (lung immaturity, inflammation, mechanical ventilation (MV), oxygen), which allows long-term outcome evaluation due to a non-traumatic intubation procedure. Objectives: To test the feasibility of a new rat model by investigating effects of MV, inflammation and oxygen applied to immature lungs after a ventilation-free interval. Methods: On day 4, 5, or 6 newborn rats were given an intraperitoneal injection of lipopolysaccharides to induce a systemic inflammation. 24 h later they were anesthetized, endotracheally intubated and ventilated for 8 h with 60% oxygen. After weaning of anesthesia and MV the newborn rats were extubated and returned to their mothers. Two days later they were killed and outcome measurements were performed (histology, quantitative RT-PCR) and compared to animals investigated directly after MV. Results: Directly after MV, histological signs of ventilator-induced lung injury were found. After 48 h, the first signs of early BPD were seen with delayed alveolar formation. Expression of inflammatory genes was only transiently increased. After 48 h genes involved in alveolarization, such as matrix metalloproteinase-9 and tropoelastin, showed a significant change of their expression. Conclusion: For the first time we can evaluate in a newborn rat model the effects of MV after a ventilation-free interval. This allows discrimination between immediate response genes and delayed changes of expression of more structural genes involved in alveolarization.
Resumo:
BACKGROUND: Both non-traumatic and traumatic spinal cord injuries have in common that a relatively minor structural lesion can cause profound sensorimotor and autonomous dysfunction. Besides treating the cause of the spinal cord injury the main goal is to restore lost function as far as possible. AIM: This article provides an overview of current innovative diagnostic (imaging) and therapeutic approaches (neurorehabilitation and neuroregeneration) aiming for recovery of function after non-traumatic and traumatic spinal cord injuries. MATERIAL AND METHODS: An analysis of the current scientific literature regarding imaging, rehabilitation and rehabilitation strategies in spinal cord disease was carried out. RESULTS: Novel magnetic resonance imaging (MRI) based techniques (e.g. diffusion-weighted MRI and functional MRI) allow visualization of structural reorganization and specific neural activity in the spinal cord. Robotics-driven rehabilitative measures provide training of sensorimotor function in a targeted fashion, which can even be continued in the homecare setting. From a preclinical point of view, defined stem cell transplantation approaches allow for the first time robust structural repair of the injured spinal cord. CONCLUSION: Besides well-established neurological and functional scores, MRI techniques offer the unique opportunity to provide robust and reliable "biomarkers" for restorative therapeutic interventions. Function-oriented robotics-based rehabilitative interventions alone or in combination with stem cell based therapies represent promising approaches to achieve substantial functional recovery, which go beyond current rehabilitative treatment efforts.
Resumo:
Number of deaths and age-standardised death rates by type of injury for the following regions and year of occurrence:Republic of Ireland 1982, 1983, 1995-2004Northern Ireland 1982, 1983, 1995-2002England 1996-2003Scotland 1982, 1983, 1995-2004Wales 1996-2003
Resumo:
Number of hospital discharges and age-standardised discharge rates for emergency hospital admissions for injury by sex and type of injury for the following regions and year:Republic of Ireland 2006Northern Ireland 2006England 2006/07Scotland 2006/07Wales 2006 Numbers and rates are based on official hospital statistics from each region. All regions use International Classification of Disease (ICD) version 10 for hospital discharges in these years. Only emergency inpatient hospital spells with an ICD 10 code in the range S000-T739, T750-T759, T780-T789 (in any diagnostic position) and an ICD10 external cause code in the range V01-Y36 (in any diagnostic position) were included. A hospital spell is an unbroken period of time that a person spends as an inpatient in a hospital. The person may change consultant and/or specialty during a spell but is counted only once. See http://www.injuryobservatory.net/analysis-of-inpatient-admissions-data-f... for more details.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Resumo:
Distinguishing drug-induced liver injury (DILI) from idiopathic autoimmune hepatitis (AIH) can be challenging. We performed a standardized histologic evaluation to explore potential hallmarks to differentiate AIH versus DILI. Biopsies from patients with clinically well-characterized DILI [n = 35, including 19 hepatocellular injury (HC) and 16 cholestatic/mixed injury (CS)] and AIH (n = 28) were evaluated for Ishak scores, prominent inflammatory cell types in portal and intra-acinar areas, the presence or absence of emperipolesis, rosette formation, and cholestasis in a blinded fashion by four experienced hepatopathologists. Histologic diagnosis was concordant with clinical diagnosis in 65% of cases; but agreement on final diagnosis among the four pathologists was complete in only 46% of cases. Interface hepatitis, focal necrosis, and portal inflammation were present in all evaluated cases, but were more severe in AIH (P < 0.05) than DILI (HC). Portal and intra-acinar plasma cells, rosette formation, and emperiopolesis were features that favored AIH (P < 0.02). A model combining portal inflammation, portal plasma cells, intra-acinar lymphocytes and eosinophils, rosette formation, and canalicular cholestasis yielded an area under the receiver operating characteristic curve (AUROC) of 0.90 in predicting DILI (HC) versus AIH. All Ishak inflammation scores were more severe in AIH than DILI (CS) (P ≤ 0.05). The four AIH-favoring features listed above were consistently more prevalent in AIH, whereas portal neutrophils and intracellular (hepatocellular) cholestasis were more prevalent in DILI (CS) (P < 0.02). The combination of portal inflammation, fibrosis, portal neutrophils and plasma cells, and intracellular (hepatocellular) cholestasis yielded an AUC of 0.91 in predicting DILI (CS) versus AIH. Conclusion: Although an overlap of histologic findings exists for AIH and DILI, sufficient differences exist so that pathologists can use the pattern of injury to suggest the correct diagnosis.
Resumo:
Metachondromatosis (MC) is a rare, autosomal dominant, incompletely penetrant combined exostosis and enchondromatosis tumor syndrome. MC is clinically distinct from other multiple exostosis or multiple enchondromatosis syndromes and is unlinked to EXT1 and EXT2, the genes responsible for autosomal dominant multiple osteochondromas (MO). To identify a gene for MC, we performed linkage analysis with high-density SNP arrays in a single family, used a targeted array to capture exons and promoter sequences from the linked interval in 16 participants from 11 MC families, and sequenced the captured DNA using high-throughput parallel sequencing technologies. DNA capture and parallel sequencing identified heterozygous putative loss-of-function mutations in PTPN11 in 4 of the 11 families. Sanger sequence analysis of PTPN11 coding regions in a total of 17 MC families identified mutations in 10 of them (5 frameshift, 2 nonsense, and 3 splice-site mutations). Copy number analysis of sequencing reads from a second targeted capture that included the entire PTPN11 gene identified an additional family with a 15 kb deletion spanning exon 7 of PTPN11. Microdissected MC lesions from two patients with PTPN11 mutations demonstrated loss-of-heterozygosity for the wild-type allele. We next sequenced PTPN11 in DNA samples from 54 patients with the multiple enchondromatosis disorders Ollier disease or Maffucci syndrome, but found no coding sequence PTPN11 mutations. We conclude that heterozygous loss-of-function mutations in PTPN11 are a frequent cause of MC, that lesions in patients with MC appear to arise following a "second hit," that MC may be locus heterogeneous since 1 familial and 5 sporadically occurring cases lacked obvious disease-causing PTPN11 mutations, and that PTPN11 mutations are not a common cause of Ollier disease or Maffucci syndrome.
Resumo:
Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult-after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.
Resumo:
Introduction: Low brain tissue oxygen pressure (PbtO2) is associated with worse outcome in patients with severe traumatic brain injury (TBI). However, it is unclear whether brain tissue hypoxia is merely a marker of injury severity or a predictor of prognosis, independent from intracranial pressure (ICP) and injury severity. Hypothesis: We hypothesized that brain tissue hypoxia was an independent predictor of outcome in patients wih severe TBI, irrespective of elevated ICP and of the severity of cerebral and systemic injury. Methods: This observational study was conducted at the Neurological ICU, Hospital of the University of Pennsylvania, an academic level I trauma center. Patients admitted with severe TBI who had PbtO2 and ICP monitoring were included in the study. PbtO2, ICP, mean arterial pressure (MAP) and cerebral perfusion pressure (CPP = MAP-ICP) were monitored continuously and recorded prospectively every 30 min. Using linear interpolation, duration and cumulative dose (area under the curve, AUC) of brain tissue hypoxia (PbtO2 < 15 mm Hg), elevated ICP >20 mm Hg and low CPP <60 mm Hg were calculated, and the association with outcome at hospital discharge, dichotomized as good (Glasgow Outcome Score [GOS] 4-5) vs. poor (GOS 1-3), was analyzed. Results: A total of 103 consecutive patients, monitored for an average of 5 days, was studied. Brain tissue hypoxia was observed in 66 (64%) patients despite ICP was < 20 mm Hg and CPP > 60 mm Hg (72 +/- 39% and 49 +/- 41% of brain hypoxic time, respectively). Compared with patients with good outcome, those with poor outcome had a longer duration of brain hypoxia (1.7 +/- 3.7 vs. 8.3 +/- 15.9 hrs, P<0.01), as well as a longer duration (11.5 +/- 16.5 vs. 21.6 +/- 29.6 hrs, P=0.03) and a greater cumulative dose (56 +/- 93 vs. 143 +/- 218 mm Hg*hrs, P<0.01) of elevated ICP. By multivariable logistic regression, admission Glasgow Coma Scale (OR, 0.83, 95% CI: 0.70-0.99, P=0.04), Marshall CT score (OR 2.42, 95% CI: 1.42-4.11, P<0.01), APACHE II (OR 1.20, 95% CI: 1.03-1.43, P=0.03), and the duration of brain tissue hypoxia (OR 1.13; 95% CI: 1.01-1.27; P=0.04) were all significantly associated with poor outcome. No independent association was found between the AUC for elevated ICP and outcome (OR 1.01, 95% CI 0.97-1.02, P=0.11) in our prospective cohort. Conclusions: In patients with severe TBI, brain tissue hypoxia is frequent, despite normal ICP and CPP, and is associated with poor outcome, independent of intracranial hypertension and the severity of cerebral and systemic injury. Our findings indicate that PbtO2 is a strong physiologic prognostic marker after TBI. Further study is warranted to examine whether PbtO2-directed therapy improves outcome in severely head-injured patients .
Resumo:
Prognosis after severe traumatic brain injury (TBI) is determined by the severity of initial injury and secondary cerebral damage. The main determinants of secondary cerebral damage are brain ischemia and oedema. Traumatic brain injury is a heterogeneous disease. Head CT-scan is essential in evaluating initial type of injury and severity of brain oedema. A standardised approach based on prevention and treatment of secondary cerebral damage is the only effective therapeutic strategy of severe TBI. We review the classification, pathophysiology and treatment of secondary cerebral damage after severe TBI and discuss the management of intracranial hypertension, cerebral perfusion pressure and brain ischemia.
Resumo:
BACKGROUND: Alcohol use causes high burden of disease and injury globally. Switzerland has a high consumption of alcohol, almost twice the global average. Alcohol-attributable deaths and years of life lost in Switzerland were estimated by age and sex for the year 2011. Additionally, the impact of heavy drinking (40+grams/day for women and 60+g/day for men) was estimated. METHODS: Alcohol consumption estimates were based on the Addiction Monitoring in Switzerland study and were adjusted to per capita consumption based on sales data. Mortality data were taken from the Swiss mortality register. Methodology of the Comparative Risk Assessment for alcohol was used to estimate alcohol-attributable fractions. RESULTS: Alcohol use caused 1,600 (95% CI: 1,472 - 1,728) net deaths (1,768 deaths caused, 168 deaths prevented) among 15 to 74 year olds, corresponding to 8.7% of all deaths (men: 1,181 deaths; women: 419 deaths). Overall, 42,627 years of life (9.7%, 95% CI: 40,245 - 45,008) were lost due to alcohol. Main causes of alcohol-attributable mortality were injuries at younger ages (15-34 years), with increasing age digestive diseases (mainly liver cirrhosis) and cancers (particularly breast cancers among women). The majority (62%) of all alcohol-attributable deaths was caused by chronic heavy drinking (men: 67%; women: 48 %). CONCLUSION: Alcohol is a major cause of premature mortality in Switzerland. Its impact, among young people mainly via injuries, among men mainly through heavy drinking, calls for a mix of preventive actions targeting chronic heavy drinking, binge drinking and mean consumption.
Resumo:
OBJECTIVE To determine the prevalence and clinical significance of hepatitis G virus (HGV) infection in a large cohort of patients with primary Sjögren¿s syndrome (SS). PATIENTS AND METHODS The study included 100 consecutive patients (92 female and eight male), with a mean age of 62 years (range 31¿80) that were prospectively visited in our unit. All patients fulfilled the European Community criteria for SS and underwent a complete history, physical examination, as well as biochemical and immunological evaluation for liver disease. Two hundred volunteer blood donors were also studied. The presence of HGV-RNA was investigated in the serum of all patients and donors. Aditionally, HBsAg and antibodies to hepatitis C virus were determined. RESULTS Four patients (4%) and six volunteer blood donors (3%) presented HGV-RNA sequences in serum. HGV infection was associated with biochemical signs of liver involvement in two (50%) patients. When compared with primary SS patients without HGV infection, no significant differences were found in terms of clinical or immunological features. HCV coinfection occurs in one (25%) of the four patients with HGV infection. CONCLUSION The prevalence of HGV infection in patients with primary SS is low in the geographical area of the study and HCV coinfection is very uncommon. HGV infection alone does not seen to be an important cause of chronic liver injury in the patients with primary SS in this area.
Resumo:
Coming Into Focus presents a needs assessment related to Iowans with brain injury, and a state action plan to improve Iowa’s ability to meet those needs. Support for this project came from a grant from the Office of Maternal and Child Health to the Iowa Department of Public Health, Iowa’s lead agency for brain injury. The report is a description of the needs of people with brain injuries in Iowa, the status of services to meet those needs and a plan for improving Iowa’s system of supports. Brain injury can result from a skull fracture or penetration of the brain, a disease process such as tumor or infection, or a closed head injury, such as shaken baby syndrome. Traumatic brain injury is a leading cause of death and disability in children and young adults (Fick, 1997). In the United States there are as many as 2 million brain injuries per year, with 300,000 severe enough to require hospitalization. Some 50,000 lives are lost every year to TBI. Eighty to 90 thousand people have moderate to acute brain injuries that result in disabling conditions which can last a lifetime. These conditions can include physical impairments, memory defects, limited concentration, communication deficits, emotional problems and deficits in social abilities. In addition to the personal pain and challenges to survivors and their families, the financial cost of brain injuries is enormous. With traumatic brain injuries, it is estimated that in 1995 Iowa hospitals charged some $38 million for acute care for injured persons. National estimates offer a lifetime cost of $4 million for one person with brain injury (Schootman and Harlan, 1997). With this estimate, new injuries in 1995 could eventually cost over $7 billion dollars. Dramatic improvements in medicine, and the development of emergency response systems, means that more people sustaining brain injuries are being saved. How can we insure that supports are available to this emerging population? We have called the report Coming into Focus, because, despite the prevalence and the personal and financial costs to society, brain injury is poorly understood. The Iowa Department of Public Health, the Iowa Advisory Council on Head Injuries State Plan Task Force, the Brain Injury Association of Iowa and the Iowa University Affiliated Program have worked together to begin answering this question. A great deal of good information already existed. This project brought this information together, gathered new information where it was needed, and carried out a process for identifying what needs to be done in Iowa, and what the priorities will be.
Resumo:
According to the Centers for Disease Control and Prevention, unintentional injury is the fifth leading cause of death for all age groups and the first leading cause of death for people from 1 to 44 years of age in the United States, while homicide remains the 2nd leading cause of death for 15 to 24 years old (CDC, 2006). In 2004, there were approximately 144,000 deaths due to unintentional injuries in the US; 53% of which represent people over 45 years of age (CDC, 2004). With 20,322 suicidal deaths and 13,170 homicidal deaths, intentional injury deaths affect mostly people under 45 years old. On average, there are 1,150 unintentional deaths per year in Iowa. In 2004, 37% of unintentional deaths were due to motor vehicle accidents (MTVCC) occurring across all age ranges and 30% were due to falls involving persons over 65 years of age 82% of the time (IDPH Health Stat Div., 2004). The most debilitating outcome of injury is traumatic brain injury, which is characterized by the irreversibility of its damages, long-term effects on quality of life, and healthcare costs. The latest data available from the CDC estimated that, nationally, 50,000 traumatic brain injured (TBI) people die each year; three times as many are hospitalized and more than twenty times as many are released from emergency room (ER) departments (CDC, 2006). Besides the TBI registry, brain injury data is also captured through three other data sources: 1) death certificates; 2) hospital inpatient data; and, 3) hospital outpatient data. The inpatient and outpatient hospital data are managed by the Iowa Hospital Association, which provides to Iowa Department of Public Health the hospital data without personal identifiers. (The hospitals send reports to the Agency of Health Care Research and Quality, which developed the Health Care Utilization Project and its product, the National Inpatient Sample).
Resumo:
OBJECTIVES: To delineate the various factors contributing to failure or delay in decannulation after partial cricotracheal resection (PCTR) in children. STUDY DESIGN: Case series. SETTING: Academic tertiary medical center. SUBJECTS AND METHODS: A retrospective case review of 100 children who underwent PCTR between 1978 and 2008 for severe subglottic stenosis using an ongoing database. RESULTS: Ninety of 100 (90%) patients were decannulated. Six patients needed secondary tracheostomy. The results of the preoperative evaluation showed grade II stenosis in four patients, grade III in 64 patients, and grade IV in 32 patients. The overall decannulation rate was 100 percent in grade II, 95 percent in grade III, and 78 percent in grade IV stenosis. Fourteen (14%) patients required revision open surgery. The most common cause of revision surgery was posterior glottic stenosis. Partial anastomotic dehiscence was seen in four patients. Delayed decannulation (>1 year) occurred in nine patients. Overall mortality rate in the whole series was 6 percent. No deaths were directly related to the surgery. No iatrogenic recurrent laryngeal nerve injury was present in the entire series. CONCLUSION: Comorbidities and associated syndromes should be addressed before PCTR is planned to improve the final postoperative outcome in terms of decannulation. Perioperative morbidity due to anastomotic dehiscence, to a certain extent, can be avoided by intraoperative judgment in the selection of double-stage surgery when more than five tracheal rings need to be resected. Subglottic stenosis with glottic involvement continues to pose a difficult challenge to pediatric otolaryngologists, often necessitating revision procedures.