979 resultados para Carbon isotopes, Salt Ranges, Kashmir, Himalaya, Nepal, rifting, sequence stratigraphy
Resumo:
This study examined whether high nutrient concentrations associated with leaf-cutting ant nests influence plant growth and plant water relations in Amazon rain forests. Three nests of Atta cephalotes were selected along with 31 Amaioua guianensis and Protium sp. trees that were grouped into trees near and distant (>10 m) from nests. A 15N leaf-labelling experiment confirmed that trees located near nests accessed nutrients from nests. Trees near nests exhibited higher relative growth rates (based on stem diameter increases) on average compared with trees further away; however this was significant for A. guianensis (near nest 0.224 y−1 and far from nest 0.036 y−1) but not so for Protium sp. (0.146 y−1 and 0.114 y−1 respectively). Water relations were similarly species-specific; for A. guianensis, near-nest individuals showed significantly higher sap flow rates (16 vs. 5 cm h−1), higher predawn/midday water potentials (−0.66 vs. −0.98 MPa) and lower foliar δ13C than trees further away indicating greater water uptake in proximity to the nests while the Protium sp. showed no significant difference except for carbon isotopes. This study thus shows that plant response to high nutrient concentrations in an oligotrophic ecosystem varies with species. Lower seedling abundance and species richness on nests as compared with further away suggests that while adult plants access subterranean nutrient pools, the nest surfaces themselves do not encourage plant establishment and growth.
Resumo:
Belowground biomass is a critical factor regulating ecosystem functions of coastal marshes, including soil organic matter (SOM) accumulation and the ability of these systems to keep pace with sea-level rise. Nevertheless, belowground biomass responses to environmental and vegetation changes have been given little emphasis marsh studies. Here we present a method using stable carbon isotopes and color to identify root and rhizomes of Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller (C3) and Spartina patens (Ait.) Muhl. (C4) occurring in C3− and C4-dominated communities in a Chesapeake Bay brackish marsh. The functional significance of the biomass classes we identified is underscored by differences in their chemistry, depth profiles, and variation in biomass and profiles relative to abiotic and biotic factors. C3 rhizomes had the lowest concentrations of cellulose (29.19%) and lignin (14.43%) and the lowest C:N (46.97) and lignin:N (0.16) ratios. We distinguished two types of C3 roots, and of these, the dark red C3 roots had anomalously high C:N (195.35) and lignin:N (1.14) ratios, compared with other root and rhizome classes examined here and with previously published values. The C4-dominated community had significantly greater belowground biomass (4119.1 g m−2) than the C3-dominated community (3256.9 g m−2), due to greater total root biomass and a 3.6-fold higher C3-root:rhizome ratio in the C4-dominated community. C3 rhizomes were distributed significantly shallower in the C4-dominated community, while C3 roots were significantly deeper. Variability in C3 rhizome depth distributions was explained primarily by C4 biomass, and C3 roots were explained primarily by water table height. Our results suggest that belowground biomass in this system is sensitive to slight variations in water table height (across an 8 cm range), and that the reduced overlap between C3 and C4 root profiles in the C4-dominated community may account for the greater total root biomass observed in that community. Given that future elevated atmospheric CO2 and accelerated sea-level rise are likely to increase C3 abundance in Atlantic and Gulf coast marshes, investigations that quantify how patterns of C3 and C4 belowground biomass respond to environmental and biological factors stand to improve our understanding of ecosystem-wide impacts of global changes on coastal wetlands.
Resumo:
The concentrations, distributions, and stable carbon isotopes (d13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and d13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25-C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7 per mil (±1Sigma standard deviation) spread in d13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52-0.94). In contrast, plant-dominated n-alcohols (C26-C36) and n-alkanoic acids (C26-C36) exhibit stronger positive correlations (r = 0.70-0.99) between homologue concentrations and depleted d13C values (individual homologues average <= -31.3 per mil and -30.8 per mil, respectively), with lower d13C variability across chain-lengths (2.6 ± 0.6 per mil and 2.0 ± 1.1 per mil, respectively). All individual plant-wax lipids show little temporal d13C variability throughout the time-series (1 Sigma <= 0.9 per mil), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19-58% of total plant-wax lipids) and n-alkanoic acids (26-76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5-16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.
Resumo:
Insight into past changes of upper ocean stratification, circulation, and nutrient signatures rely on our knowledge of the apparent calcification depth (ACD) and ecology of planktonic foraminifera, which serve as archives for paleoceanographic relevant geochemical signals. The ACD of different species varies strongly between ocean basins, but also regionally. We constrained foraminiferal ACDs in the western Pacific warm pool (Manihiki Plateau) by comparing stable oxygen and carbon isotopes (d18Ocalcite, d13Ccalcite) as well as Mg/Ca ratios from living planktonic foraminifera to in-situ physical and chemical water mass properties (temperature, salinity, d18Oseawater, d13CDIC). Our analyses point to Globigerinoides ruber as the shallowest dweller, followed by Globigerinoides sacculifer, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata and Globotaloides hexagonus inhabiting increasingly greater depths. These findings are consistent with other ocean basins; however, absolute ACDs differ from other studies. The uppermost mixed-layer species G. ruber and G. sacculifer denote mean calcification depths of ~95 m and ~120 m, respectively. These Western Pacific ACDs are much deeper than in most other studies and most likely relate to the thick surface mixed layer and the deep chlorophyll maximum in this region. Our results indicate that N. dutertrei appears to be influenced by mixing waters from the Pacific equatorial divergence, while P. obliquiloculata with an ACD of ~160 m is more suitable for thermocline reconstructions. ACDs of G. hexagonus reveal a deep calcification depth of ~450 m in oxygen-depleted, but nutrient-rich water masses, consistent to other studies. As the d13C of G. hexagonus is in near-equilibrium with ambient seawater, we suggest this species is suitable for tracing nutrient conditions in equatorial water masses originating in extra-topical regions.
Resumo:
We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.
Resumo:
Planktic foraminifers Neogloboquadrina pachyderma (sin.) from 87 eastern and central Arctic Ocean surface sediment samples were analyzed for stable oxygen and carbon isotope composition. Additional results from 52 stations were taken from the literature. The lateral distribution of delta18O (18O/16O) values in the Arctic Ocean reveals a pattern of roughly parallel, W-E stretching zones in the Eurasian Basin, each ~0.5 per mil wide on the delta18O scale. The low horizontal and vertical temperature variability in the Arctic halocline waters (0-100 m) suggests only little influence of temperature on the oxygen isotope distribution of N. pachyderma (sin.). The zone of maximum delta18O values of up to 3.8 per mil is situated in the southern Nansen Basin and relates to the tongue of saline (> 33%.) Atlantic waters entering the Arctic Ocean through the Fram Strait. delta18O values decrease both to the Barents Shelf and to the North Pole, in accordance with the decreasing salinities of the halocline waters. In the Nansen Basin, a strong N-S delta18O gradient is in contrast with a relatively low salinity change and suggests contributions from different freshwater sources, i.e. salinity reduction from sea ice meltwater in the south and from light isotope waters (meteoric precipitation and river-runoff) in the northern part of the basin. North of the Gakkel Ridge, delta18O and salinity gradients are in good accordance and suggest less influence of sea ice melting processes. The delta13C (13C/12C) values of N. pachyderma (sin.) from Arctic Ocean surface sediment samples are generally high (0.75-0.95 per mil). Lower values in the southern Eurasian Basin appear to be related to the intrusion of Atlantic waters. The high delta13C values are evidence for well ventilated surface waters. Because the perennial Arctic sea ice cover largely prevents atmosphere-ocean gas exchange, ventilation on the seasonally open shelves must be of major importance. Lack of delta13C gradients along the main routes of the ice drift from the Siberian shelves to the Fram Strait suggests that primary production (i.e. CO2 consumption) does probably not change the CO2 budget of the Arctic Ocean significantly.
Resumo:
Geologie cores on two profiles oriented normaly to the continental shelf and slope, have been investigated to reconstruct the Quaternary sedimentary history of the southeast continental border of South Orkney (NW Weddell Sea). The sediments were described macroscopically and their fabric investigated by use of X-radiographs. Laboratory work comprised detailed grain-size analysis, determination of the watercontent, carbonate, organic carbon and sand fraction.composition. Stable oxygen and carbon isotopes have been measured On planktonic foraminifera. Palaeomagnetism, analysis of 230Th-content and detailed comparison of the lithlogic Parameters with the oxygen isotope stages (Martinson curve) were used for stratigraphic classification of the sediments. The sediment cores from the continental slope comprise a maximum age of 300,000 years B. P.. Bottom currents, ice rafting and biogenic input are the main sources of sediment. Based on lithologic parameters a distinction between glacial and interglacial facies is possible. Silty clays without microfossils and few bioturbation characterise the sediments of the glacial facies. Only small amounts of icerafted debris can be recognized. This type of sediment was accumulated during times of lower sea-level and drastically reduced rate of bottom water production. Based on grain-size distribution, bottom current velocities of 0.01 cmls were calculated. Thick sea-ice coverage reduced biogenic production in the surface water, and as consequence benthic communities were depleted. Because of the reduced benthic life, sediments are only slithly bioturbated. At the beginning of the interglacial Stage, the sea-level rised rapidly, and calving rate of icebergs, combined with input of ice-rafted material, increased considerably. Sediments of this transition facies are silty cliiys with a high proportion of coarse ice-rafted debris, but without microfossils. With the onset of bottom water production in connection with shelf ice water, sediments of interglacial facies were formed. They consist of silty clays to clayey silts with considerable content of sand and gravel. Sediments are strongly bioturbated. Based On the sediment caracteristics, current velocities of the bottom water were calculated to be of 0.96 cmls for interglacials. At the southern slope of a NW/SE-striking ridge, bottom water current is channelized, resulting in a drastic increase of current velocities. Current velocities up to 7.5 cm/s lead to formation of residual sediments. While the continental slope has predominantly fine sediments, the South Orkney shelf are mainly sandy silts and silty sands with a high proportion of gravel. These sediments were formed dominantly by ice-rafting during Brunhes- and Matuyama-Epoch. Currents removed the fine fraction of the sediments. Based on microfossil contents it was not possible to differentiate sediments from glacial to interglacial. In the upper Parts of the cores graded sequences truncated by erosion were observed. These sequences were formed during Brunhes-Epoch by strong currents with velocities decreasing periodically from about 7.5 cm/s to about 1 cm/s. Sediments with a high proportion of siliceous microfossils but barren of foraminifera compose the lower part of the shelf cores. These sediments have formed during the warmer Matuyama-Epoch.
Resumo:
Low planktic and benthic d18O and d13C values in sediments from the Nordic seas of cold stadials of the last glaciation have been attributed to brines, formed similar to modern ones in the Arctic Ocean. To expand on the carbon isotopes of this hypothesis I investigated benthic d13C from the modern Arctic Ocean. I show that mean d13C values of live epibenthic foraminifera from the deep Arctic basins are higher than mean d13C values of upper slope epibenthic foraminifera. This agrees with mean high d13C values of dissolved inorganic carbon (DIC) in Arctic Bottom Water (ABW), which are higher than mean d13CDIC values from shallower water masses of mainly Atlantic origin. However, adjustments for oceanic 13C-Suess depletion raise subsurface and intermediate water d13CDIC values over ABW d13CDIC ones. Accordingly, during preindustrial Holocene times, the d13CDIC of ABW was as high or higher than today, but lower than the d13CDIC of younger subsurface and intermediate water. If brine-enriched water significantly ventilated ABW, brines should have had high d13CDIC values. Analogously, high-d13CDIC brines may have been formed in the Nordic seas during warm interstadials. During cold stadials, when most of the Arctic Ocean was perennially sea-ice covered, a cessation of high-d13CDIC brine rejection may have lowered d13CDIC values of ABW, and ultimately the d13CDIC in Nordic seas intermediate and deep water. So, in contrast to the idea of enhanced brine formation during cold stadials, the results of this investigation imply that a cessation of brine rejection would be more likely.
Resumo:
Date of Acceptance: 08/05/2015 Date of online publication: 16/05/2015 Elemental and isotopic data, thin and polished sections used in this contribution were obtained through two large umbrella-projects with grants provided by the Norwegian Research Council grant 191530/V30 to VAM and NERC grant NE/G00398X/1 to AEF. We thank A. Črne, the editor A. Strasser as well as one anonymous reviewer and D. Papineau for providing their valuable criticism and suggestions.
Resumo:
The oxygen isotopes ratios of benthic foraminifera and detailed radiocarbon ages of the organic matter of an over 15 m long sediment core from the outer Niger delta allow us to date the oxygen isotope stage boundaries 1/2 to 11500 (+/- 650) years BP, 2/3 to approximately 23000 (+/- 2000) years BP. The composition of the predominantly terrigenous clays and accessory pelagic fossils reflects the evolution of the climate over the southwestern Sahel zone and the response of the Eastern Tropical Atlantic to these climatic fluctuations during the Late Quaternary. The dilution of the pelagic fossil concentrations by the terrigenous material and the oxygen isotopes ratios of planktonic foraminifera indicate large fluctuations in the freshwater discharge from the Niger, with high precipitations over the drainage area of this river from 4500 (+/- 300) to 11500 (+/- 650) years BP and from 11800 (+(- 600) to 13000 (+/- 600) years BP while the time intervals in between were as dry as today. Relative increase of kaolinite during wet phases and the association of smectite, chlorite and attapulgite during dry ones characterize the response of the weathering in the Niger drainage basins to the climatic fluctuations. The occurrence of 10-14 A mixed-layers prior to 26000 years BP is correlated with moderate alteration of the crystalline substratum outcrops from the middle-lower part of the Niger Basin. High quartz concentrations are particularly typical for the transition between oxygen isotope stages 1 and 2 at the inception of heavy precipitations in the southern Sahel zone. Sedimentation rates were quite constant, 30-35 cm/1000 years; they became unusually large at the beginning of the Holocene from 10900 (+/- 650) to 11500 (+/- 650) years BP where they reached more than 600 cm/1000 years. Bottom waters around 1100 m depth in the Gulf of Guinea responded to changes in paleo-oceanography of the entire Atlantic Ocean as well as to local influences. Abnormal carbon isotopes ratios and the drastic changes from a highly diversified fauna (during stages 2 and 3. and during the last part of stage 1 after approx. 7000 years BP) to a poorly diversified fauna in the intervenin time span point to the development of a local benthic environment which cannot easily be compared with the corresponding continental and slope environments of the entire Atlantic Ocean.
Resumo:
Seasonal depth stratified plankton tows, sediment traps and core tops taken from the same stations along a transect at 29°N off NW Africa are used to describe the seasonal succession, the depth habitats and the oxygen isotope ratios (delta18O(shell)) of five planktic foraminiferal species. Both the delta18O(shell) and shell concentration profiles show variations in seasonal depth habitats of individual species. None of the species maintain a specific habitat depth exclusively within the surface mixed layer (SML), within the thermocline, or beneath the thermocline. Globigerinoides ruber (white) and (pink) occur with moderate abundance throughout the year along the transect, with highest abundances in the winter and summer/fall season, respectively. The average delta18O(shell) of G. ruber (w) from surface sediments is similar to the delta18O(shell) values measured from the sediment-trap samples during winter. However, the delta18O(shell) of G. ruber (w) underestimates sea surface temperature (SST) by 2 °C in winter and by 4 °C during summer/fall indicating an extension of the calcification/depth habitat into colder thermocline waters. Globigerinoides ruber (p) continues to calcify below the SML as well, particularly in summer/fall when the chlorophyll maximum is found within the thermocline. Its vertical distribution results in delta18O(shell) values that underestimate SST by 2 °C. Shell fluxes of Globigerina bulloides are highest in summer/fall, where it lives and calcifies in association with the deep chlorophyll maximum found within the thermocline. Pulleniatina obliquiloculata and Globorotalia truncatulinoides, dwelling and calcifying a part of their lives in the winter SML, record winter thermocline (~180 m) and deep surface water (~350 m) temperatures, respectively. Our observations define the seasonal and vertical distribution of multiple species of foraminifera and the acquisition of their delta18O(shell).
Resumo:
To investigate the potential use of the stable isotope composition of the vegetative cysts of the photosynthetic dinoflagellate Thoracosphaera heimii for quantitative palaeotemperature reconstructions a method has been developed to purify T. heimii cysts from sediment samples. Stable oxygen and carbon isotopes have been measured on T. heimii cysts from 21 surface sediment samples from the equatorial Atlantic and South Atlantic Oceans. Calculated temperatures based on the palaeotemperature equation for inorganic calcite precipitation generally reflect mean annual temperatures of the upper water column, notably of thermocline depths. Although the present results suggest that the isotopic composition of T. heimii shells might be formed in equilibrium with the seawater in which the shells are being formed, future investigations are required to determine possible effects of metabolic and kinetic processes on the fractionation process. This pilot study therefore forms the basis for future investigations on the development of this tool and the determination of a species-specific palaeotemperature equation. The wide geographic and stratigraphic distribution of T. heimii cysts in sediments, the stable position of T. heimii within the water column and the high resistance of its cysts against calcite dissolution underline its potential for a wide usability in palaeotemperature reconstructions.
Resumo:
Aragonitic clathrites are methane-derived precipitates that are found at sites of massive near-seafloor gas hydrate (clathrate) accumulations at the summit of southern Hydrate Ridge, Cascadia margin. These platy carbonate precipitates form inside or in proximity to gas hydrate, which in our study site currently coexists with a fluid that is highly enriched in dissolved ions as salts are excluded during gas hydrate formation. The clathrites record the preferential incorporation of 18O into the hydrate structure and hence the enrichment of 16O in the surrounding brine. We measured d18O values as high as 2.27 per mil relative to Peedee belemnite that correspond to a fluid composition of -1.18 per mil relative to standard mean ocean water. The same trend can be observed in Ca isotopes. Ongoing clathrite precipitation causes enrichment of the 44Ca in the fluid and hence in the carbonates. Carbon isotopes confirm a methane source for the carbonates. Our triple stable isotope approach that uses the three main components of carbonates (Ca, C, O) provides insight into multiple parameters influencing the isotopic composition of the pore water and hence the isotopic composition of the clathrites. This approach provides a tool to monitor the geochemical processes during clathrate and clathrite formation, thus recording the evolution of the geochemical environment of gas hydrate systems.