759 resultados para Cantor Manifold
Resumo:
Singular perturbations problems in dimension three which are approximations of discontinuous vector fields are studied in this paper. The main result states that the regularization process developed by Sotomayor and Teixeira produces a singular problem for which the discontinuous set is a center manifold. Moreover, the definition of' sliding vector field coincides with the reduced problem of the corresponding singular problem for a class of vector fields.
Resumo:
The smallest known three-dimensional closed manifold of curvature k = -1 was discovered a few years ago by Weeks. This kind of manifold is constructed from a hyperbolic polyhedron with faces pair-wise identified. Here it is used as the comoving spatial section of a Friedmann cosmological model, in the spirit of Ellis and Schreiber's idea of small universes. Its nontrivial global topology has the effect of producing multiple images of single cosmic sources, and this is the basis of an attempt to solve a famous controversy about the redshifts of quasars.
Resumo:
This is the first paper in a two-part series devoted to studying the Hausdorff dimension of invariant sets of non-uniformly hyperbolic, non-conformal maps. Here we consider a general abstract model, that we call piecewise smooth maps with holes. We show that the Hausdorff dimension of the repeller is strictly less than the dimension of the ambient manifold. Our approach also provides information on escape rates and dynamical dimension of the repeller.
Resumo:
In this work we present a generalization of an exact sequence of normal bordism groups given in a paper by H. A. Salomonsen (Math. Scand. 32 (1973), 87-111). This is applied to prove that if h : M-n --> Xn+k, 5 less than or equal to n < 2k, is a continuous map between two manifolds and g : M-n --> BO is the classifying map of the stable normal bundle of h such that (h, g)(*) : H-i (M, Z(2)) --> H-i (X x BO, Z(2)) is an isomorphism for i < n - k and an epimorphism for i = n - k, then h bordant to an immersion implies that h is homotopic to an immersion. The second remark complements the result of C. Biasi, D. L. Goncalves and A. K. M. Libardi (Topology Applic. 116 (2001), 293-303) and it concerns conditions for which there exist immersions in the metastable dimension range. Some applications and examples for the main results are also given.
Resumo:
We prove that every robustly transitive and every stably ergodic symplectic diffeomorphism on a compact manifold admits a dominated splitting. In fact, these diffeomorphisms are partially hyperbolic. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
When an area to be irrigated has a high slope gradient in the manifold line direction, an option is to use a tapered pipeline to economize on pipe costs and to keep pressure head variations within desired limits. The objective of this paper is to develop a linear optimization model to design a microirrigation system with tapered, downhill manifold lines, minimizing the equivalent annual cost of the hydraulic network and the annual pumping cost, and maximizing the emission uniformity previously established to the subunit. The input data are irrigation system layout, cost of all hydraulic network components, and electricity price. The output data are equivalent annual cost, pipeline diameter in each line of the system, pressure head in each node, and total operating pressure head. To illustrate its capability, the model is applied in a citrus orchard in Sao, Paulo State, Brazil, considering slopes of 3, 6, and 9%. The model proved to be efficient in the design of the irrigation system in terms of the emission uniformity desired.
Resumo:
This paper deals with two aspects of relativistic cosmologies with closed spatial sections. These spacetimes are based on the theory of general relativity, and admit a foliation into space sections S(t), which are spacelike hypersurfaces satisfying the postulate of the closure of space: each S(t) is a three-dimensional closed Riemannian manifold. The topics discussed are: (i) a comparison, previously obtained, between Thurston geometries and Bianchi-Kantowski-Sachs metrics for such three-manifolds is here clarified and developed; and (ii) the implications of global inhomogeneity for locally homogeneous three-spaces of constant curvature are analyzed from an observational viewpoint.
Resumo:
We confirm a conjecture of Mello and Coelho [Phys. Lett. A 373 (2009) 1116] concerning the existence of centers on local center manifolds at equilibria of the Lu system of differential equations on R(3). Our proof shows that the local center manifolds are algebraic ruled surfaces, and are unique. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We construct the S-matrix for bound state (gauge-invariant) scattering for nonlinear sigma models defined on the manifold SU(n) S(U(p)⊗U(n-p)) with fermions. It is not possible to compute gauge non-singlet matrix elements. In the present language, constraints from higher conservation laws determine the bound state solution. An alternative derivation is also presented. © 1988.
Resumo:
As recently shown the conformal affine Toda models can be obtained via hamiltonian reduction from a two-loop Kac-Moody algebra. In this paper we propose a systematic procedure to analyze the higher spin symmetries of the conformal affine Toda models. The method is based on an explicit construction of infinite towers of extended conformal symmetry generators. Two fundamental building blocks of this construction are special spin-one and -two primary fields characterizing the conformal structure of these models. The connection to the algebra of area preserving diffeomorphisms on a two-manifold (w∞ algebra) is established.
Resumo:
Fractal geometry is relevant to understand and explain many natural complex geometries. Using the fractal set concept (fig. 1) many authors have shown that shorelines, landscapes and fractures follow a fractal behaviour. These authors have developed many methods, including the Cantor's Dust Method (CDM) (VELDE et al., 1992), a linear method of analysis adapted for the determination of two-dimensional phenomena. The Itu Granitic Complex (IGC) is a wide granitic body that that crops out at northwest of Cabreuva City, Sao Paulo State (fig. 2) and was affected in its south border by dextral Itu-Jundiuvira Shear Zone (IJSZ) that produced fractures and alignment of feldspars crystals. The different types of fractures (compression, distension and shear) was discriminated from the relationship between them and medium stress ellipsoid of IJSZ (fig. 3). A modified version of CDM was used to study a possible fractal behaviour of the fracture traces in the south border of IGC. The main modification was the use only one direction of analysis (NE/SW). Four parallel profiles were traced with lengths between 9.75km and 12.75km, each one them was divided into six classes of segments (x) with 375m, 500m, 750m, 1.000m, 1.250m and 1.500m. The parameter (N) is provided by he rate between profile length and choiced segment. For each x the number of intervals is counted with at least one event (fracture intersection) which supplied the parameter(n). The n/N rate provide the parameter (p) that represents the relationship between frequency of events and x. And finally the parameters p and x were plotted in a logarithmic graphics (fig. 4) that provide a line with such a declivity (1) which is related to effective dimension (De). In theory, granitics bodies are isotropics and they would have a same fractal dimension in all segments, but the logarithmic graphics (fig. 4) show that fracture traces of IGC has a fractal behaviour in a restrict interval. This fact probably occurs from the passage of a ductil-brittle deformation condition to a more brittle deformation condition of IGC.
Resumo:
We show that an extra constant of motion with an analytic form can exist in the neighborhood of some discrete circular orbits of helium when one includes retardation and self-interaction effects. The energies of these discrete stable circular orbits are in the correct atomic magnitude. The highest frequency in the stable manifold of one such orbit agrees with the highest frequency sharp line of parahelium to within 2%. The generic term of the frequency in the stable manifold to higher orbits is also in agreement with the asymptotic form of quantum mechanics for helium.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study the existence of periodic solutions in the neighbourhood of symmetric (partially) elliptic equilibria in purely reversible Hamiltonian vector fields. These are Hamiltonian vector fields with an involutory reversing symmetry R. We contrast the cases where R acts symplectically and anti-symplectically. In case R acts anti-symplectically, generically purely imaginary eigenvalues are isolated, and the equilibrium is contained in a local two-dimensional invariant manifold containing symmetric periodic solutions encircling the equilibrium point. In case R acts symplectically, generically purely imaginary eigenvalues are doubly degenerate, and the equilibrium is contained in two two-dimensional invariant manifolds containing nonsymmetric periodic solutions encircling the equilibrium point. In addition, there exists a three-dimensional invariant surface containing a two-parameter family of symmetric periodic solutions.
Resumo:
We study non-hyperbolic repellers of diffeomorphisms derived from transitive Anosov diffeomorphisms with unstable dimension 2 through a Hopf bifurcation. Using some recent abstract results about non-uniformly expanding maps with holes, by ourselves and by Dysman, we show that the Hausdorff dimension and the limit capacity (box dimension) of the repeller are strictly less than the dimension of the ambient manifold.