982 resultados para C93 - Field Experiments
Resumo:
A high proportion of amphibian species are threatened with extinction globally, and habitat loss and degradation are the most frequently implicated causes. Rapid deforestation for the establishment of agricultural production is a primary driver of habitat loss in tropical zones where amphibian diversity is highest. Land-cover change affects native assemblages, in part, through the reduction of habitat area and the reduction of movement among remnant populations. Decreased gene flow contributes to loss of genetic diversity, which limits the ability of local populations to respond to further environmental changes. The focus of this dissertation is on the degree to which common land uses in Sarapiquí, Costa Rica impede the movement of two common amphibian species. First, I used field experiments, including displacement trials, and a behavioral landscape ecology framework to investigate the resistance of pastures to movement of Oophaga pumilio. Results from experiments demonstrate that pastures do impede movement of O. pumilio relative to forest. Microclimatic effects on movement performance as well as limited perceptual ranges likely contribute to reduced return rates through pastures. Next, I linked local processes to landscape scale estimates of resistance. I conducted experiments to measure habitat-specific costs to movement for O. pumilio and Craugastor bransfodrii, and then used experimental results to parameterize connectivity models. Model validation indicated highest support for resistance estimates generated from responses to land-use specific microclimates for both species and to predator encounters for O. pumilio. Finally, I used abundance and experiment-derived resistance estimates to analyze the effects of prevalent land uses on population genetic structure of the two focal species. While O. pumilio did not exhibit a strong response to landscape heterogeneity and was primarily structured by distances among sites, C. bransfordii genetic variation was explained by resistance estimates from abundance and experiment data. Collectivity, this work demonstrates that common land uses can offer different levels of resistance to amphibian movements in Sarapiquí and illustrates the value of investigating local scales processes to inform interpretation of landscape-scale patterns.^
Resumo:
Predators exert strong direct and indirect effects on ecological communities by intimidating their prey. Non-consumptive effects (NCEs) of predators are important features of many ecosystems and have changed the way we understand predator-prey interactions, but are not well understood in some systems. For my dissertation research I combined a variety of approaches to examine the effect of predation risk on herbivore foraging and reproductive behaviors in a coral reef ecosystem. In the first part of my dissertation, I investigated how diet and territoriality of herbivorous fish varied across multiple reefs with different levels of predator biomass in the Florida Keys National Marine Sanctuary. I show that both predator and damselfish abundance impacted diet diversity within populations for two herbivores in different ways. Additionally, reef protection and the associated recovery of large predators appeared to shape the trade-off reef herbivores made between territory size and quality. In the second part of my dissertation, I investigated context-dependent causal linkages between predation risk, herbivore foraging behavior and resource consumption in multiple field experiments. I found that reef complexity, predator hunting mode, light availability and prey hunger influenced prey perception of threat and their willingness to feed. This research argues for more emphasis on the role of predation risk in affecting individual herbivore foraging behavior in order to understand the implications of human-mediated predator removal and recovery in coral reef ecosystems.^
Resumo:
Ocean acidification (OA) is likely to exert selective pressure on natural populations. Our ability to predict which marine species will adapt to OA, and what underlies this adaptive potential, are of high conservation and resource management priority. Using a naturally low pH vent site in the Mediterranean Sea (Castello Aragonese, Ischia) mirroring projected future OA conditions, we carried out a reciprocal transplant experiment to investigate the relative importance of phenotypic plasticity and local adaptation in two populations of the sessile, calcifying polychaete /Simplaria /sp. (Annelida, Serpulidae, Spirorbinae): one residing in low pH and the other from a nearby ambient (i.e. high) pH site. We measured a suite of fitness related traits (i.e. survival, reproductive output, maturation, population growth) and tube growth rates in laboratory-bred F2 generation individuals from both populations reciprocally transplanted back into both ambient and low pH /in situ/ habitats. Both populations showed lower expression in all traits, but increased tube growth rates, when exposed to low pH compared to high pH conditions, regardless of their site of origin suggesting that local adaptation to low pH conditions has not occurred. We also found comparable levels of plasticity in the two populations investigated, suggesting no influence of long-term exposure to low pH on the ability of populations to adjust their phenotype. Despite high variation in trait values among sites and the relatively extreme conditions at sites close to the vents (pH < 7.36), response trends were consistent across traits. Hence, our data suggest that, for /Simplaria /and possibly other calcifiers, neither local adaptations nor sufficient phenotypic plasticity levels appear to suffice in order to compensate for the negative impacts of OA on long-term survival. Our work also underlines the utility of field experiments in natural environments subjected to high level of /p/CO_2 for elucidating the potential for adaptation to future scenarios of OA.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Volcanic CO2 seeps provide opportunities to investigate the effects of ocean acidification on organisms in the wild. To understand the influence of increasing CO2 concentrations on the metabolic rate (oxygen consumption) and the development of ocellated wrasse early life stages, we ran two field experiments, collecting embryos from nesting sites with different partial pressures of CO2 [pCO2; ambient (400 µatm) and high (800-1000 µatm)] and reciprocally transplanting embryos from ambient- to high-CO2 sites for 30 h. Ocellated wrasse offspring brooded in different CO2 conditions had similar responses, but after transplanting portions of nests to the high-CO2 site, embryos from parents that spawned in ambient conditions had higher metabolic rates. Although metabolic phenotypic plasticity may show a positive response to high CO2, it often comes at a cost, in this case as a smaller size at hatching. This can have adverse effects because smaller larvae often exhibit a lower survival in the wild. However, the adverse effects of increased CO2 on metabolism and development did not occur when embryos from the high-CO2 nesting site were exposed to ambient conditions, suggesting that offspring from the high-CO2 nesting site could be resilient to a wider range of pCO2 values than those belonging to the site with present-day pCO2 levels. Our study identifies a crucial need to increase the number of studies dealing with these processes under global change trajectories and to expand these to naturally high-CO2 environments, in order to assess further the adaptive plasticity mechanism that encompasses non-genetic inheritance (epigenetics) through parental exposure and other downstream consequences, such as survival of larvae.
Resumo:
The oxygen isotopic composition (d18O) of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy calibration a challenging task. Understanding these secondary or "vital" effects is crucial for increasing proxy accuracy. We present data from laboratory experiments showing that oxygen isotope fractionation during calcification in the coccolithophore Calcidiscus leptoporus and the calcareous dinoflagellate Thoracosphaera heimii is dependent on carbonate chemistry of seawater in addition to its dependence on temperature. A similar result has previously been reported for planktonic foraminifera, supporting the idea that the [CO3]2- effect on d18O is universal for unicellular calcifying planktonic organisms. The slopes of the d18O/[CO3]2- relationships range between -0.0243 per mil/(µmol/kg) (calcareous dinoflagellate T. heimii) and the previously published -0.0022 per mil/(µmol/kg) (non-symbiotic planktonic foramifera Orbulina universa), while C. leptoporus has a slope of -0.0048 per mil/(µmol/kg). We present a simple conceptual model, based on the contribution of d18O-enriched [HCO3]- to the [CO3]2- pool in the calcifying vesicle, which can explain the [CO3]2- effect on d18O for the different unicellular calcifiers. This approach provides a new insight into biological fractionation in calcifying organisms. The large range in d18O/[CO3]2- slopes should possibly be explored as a means for paleoreconstruction of surface [CO3]2-, particularly through comparison of the response in ecologically similar planktonic organisms.
Resumo:
The environment affects our health, livelihoods, and the social and political institutions within which we interact. Indeed, nearly a quarter of the global disease burden is attributed to environmental factors, and many of these factors are exacerbated by global climate change. Thus, the central research question of this dissertation is: How do people cope with and adapt to uncertainty, complexity, and change of environmental and health conditions? Specifically, I ask how institutional factors, risk aversion, and behaviors affect environmental health outcomes. I further assess the role of social capital in climate adaptation, and specifically compare individual and collective adaptation. I then analyze how policy develops accounting for both adaptation to the effects of climate and mitigation of climate-changing emissions. In order to empirically test the relationships between these variables at multiple levels, I combine multiple methods, including semi-structured interviews, surveys, and field experiments, along with health and water quality data. This dissertation uses the case of Ethiopia, Africa’s second-most populous nation, which has a large rural population and is considered very vulnerable to climate change. My fieldwork included interviews and institutional data collection at the national level, and a three-year study (2012-2014) of approximately 400 households in 20 villages in the Ethiopian Rift Valley. I evaluate the theoretical relationships between households, communities, and government in the process of adaptation to environmental stresses. Through my analyses, I demonstrate that water source choice varies by individual risk aversion and institutional context, which ultimately has implications for environmental health outcomes. I show that qualitative measures of trust predict cooperation in adaptation, consistent with social capital theory, but that measures of trust are negatively related with private adaptation by the individual. Finally, I describe how Ethiopia had some unique characteristics, significantly reinforced by international actors, that led to the development of an extensive climate policy, and yet with some challenges remaining for implementation. These results suggest a potential for adaptation through the interactions among individuals, communities, and government in the search for transformative processes when confronting environmental threats and climate change.
Resumo:
Monitoring and enforcement are perhaps the biggest challenges in the design and implementation of environmental policies in developing countries where the actions of many small informal actors cause significant impacts on the ecosystem services and where the transaction costs for the state to regulate them could be enormous. This dissertation studies the potential of innovative institutions based on decentralized coordination and enforcement to induce better environmental outcomes. Such policies have in common that the state plays the role of providing the incentives for organization but the process of compliance happens through decentralized agreements, trust building, signaling and monitoring. I draw from the literatures in collective action, common-pool resources, game-theory and non-point source pollution to develop the instruments proposed here. To test the different conditions in which such policies could be implemented I designed two field-experiments that I conducted with small-scale gold miners in the Colombian Pacific and with users and providers of ecosystem services in the states of Veracruz, Quintana Roo and Yucatan in Mexico. This dissertation is organized in three essays.
The first essay, “Collective Incentives for Cleaner Small-Scale Gold Mining on the Frontier: Experimental Tests of Compliance with Group Incentives given Limited State Monitoring”, examines whether collective incentives, i.e. incentives provided to a group conditional on collective compliance, could “outsource” the required local monitoring, i.e. induce group interactions that extend the reach of the state that can observe only aggregate consequences in the context of small-scale gold mining. I employed a framed field-lab experiment in which the miners make decisions regarding mining intensity. The state sets a collective target for an environmental outcome, verifies compliance and provides a group reward for compliance which is split equally among members. Since the target set by the state transforms the situation into a coordination game, outcomes depend on expectations of what others will do. I conducted this experiment with 640 participants in a mining region of the Colombian Pacific and I examine different levels of policy severity and their ordering. The findings of the experiment suggest that such instruments can induce compliance but this regulation involves tradeoffs. For most severe targets – with rewards just above costs – raise gains if successful but can collapse rapidly and completely. In terms of group interactions, better outcomes are found when severity initially is lower suggesting learning.
The second essay, “Collective Compliance can be Efficient and Inequitable: Impacts of Leaders among Small-Scale Gold Miners in Colombia”, explores the channels through which communication help groups to coordinate in presence of collective incentives and whether the reached solutions are equitable or not. Also in the context of small-scale gold mining in the Colombian Pacific, I test the effect of communication in compliance with a collective environmental target. The results suggest that communication, as expected, helps to solve coordination challenges but still some groups reach agreements involving unequal outcomes. By examining the agreements that took place in each group, I observe that the main coordination mechanism was the presence of leaders that help other group members to clarify the situation. Interestingly, leaders not only helped groups to reach efficiency but also played a key role in equity by defining how the costs of compliance would be distributed among group members.
The third essay, “Creating Local PES Institutions and Increasing Impacts of PES in Mexico: A real-Time Watershed-Level Framed Field Experiment on Coordination and Conditionality”, considers the creation of a local payments for ecosystem services (PES) mechanism as an assurance game that requires the coordination between two groups of participants: upstream and downstream. Based on this assurance interaction, I explore the effect of allowing peer-sanctions on upstream behavior in the functioning of the mechanism. This field-lab experiment was implemented in three real cases of the Mexican Fondos Concurrentes (matching funds) program in the states of Veracruz, Quintana Roo and Yucatan, where 240 real users and 240 real providers of hydrological services were recruited and interacted with each other in real time. The experimental results suggest that initial trust-game behaviors align with participants’ perceptions and predicts baseline giving in assurance game. For upstream providers, i.e. those who get sanctioned, the threat and the use of sanctions increase contributions. Downstream users contribute less when offered the option to sanction – as if that option signal an uncooperative upstream – then the contributions rise in line with the complementarity in payments of the assurance game.
Resumo:
Predators exert strong direct and indirect effects on ecological communities by intimidating their prey. Non-consumptive effects (NCEs) of predators are important features of many ecosystems and have changed the way we understand predator-prey interactions, but are not well understood in some systems. For my dissertation research I combined a variety of approaches to examine the effect of predation risk on herbivore foraging and reproductive behaviors in a coral reef ecosystem. In the first part of my dissertation, I investigated how diet and territoriality of herbivorous fish varied across multiple reefs with different levels of predator biomass in the Florida Keys National Marine Sanctuary. I show that both predator and damselfish abundance impacted diet diversity within populations for two herbivores in different ways. Additionally, reef protection and the associated recovery of large predators appeared to shape the trade-off reef herbivores made between territory size and quality. In the second part of my dissertation, I investigated context-dependent causal linkages between predation risk, herbivore foraging behavior and resource consumption in multiple field experiments. I found that reef complexity, predator hunting mode, light availability and prey hunger influenced prey perception of threat and their willingness to feed. This research argues for more emphasis on the role of predation risk in affecting individual herbivore foraging behavior in order to understand the implications of human-mediated predator removal and recovery in coral reef ecosystems.
Resumo:
A high proportion of amphibian species are threatened with extinction globally, and habitat loss and degradation are the most frequently implicated causes. Rapid deforestation for the establishment of agricultural production is a primary driver of habitat loss in tropical zones where amphibian diversity is highest. Land-cover change affects native assemblages, in part, through the reduction of habitat area and the reduction of movement among remnant populations. Decreased gene flow contributes to loss of genetic diversity, which limits the ability of local populations to respond to further environmental changes. The focus of this dissertation is on the degree to which common land uses in Sarapiquí, Costa Rica impede the movement of two common amphibian species. First, I used field experiments, including displacement trials, and a behavioral landscape ecology framework to investigate the resistance of pastures to movement of Oophaga pumilio. Results from experiments demonstrate that pastures do impede movement of O. pumilio relative to forest. Microclimatic effects on movement performance as well as limited perceptual ranges likely contribute to reduced return rates through pastures. Next, I linked local processes to landscape scale estimates of resistance. I conducted experiments to measure habitat-specific costs to movement for O. pumilio and Craugastor bransfodrii, and then used experimental results to parameterize connectivity models. Model validation indicated highest support for resistance estimates generated from responses to land-use specific microclimates for both species and to predator encounters for O. pumilio. Finally, I used abundance and experiment-derived resistance estimates to analyze the effects of prevalent land uses on population genetic structure of the two focal species. While O. pumilio did not exhibit a strong response to landscape heterogeneity and was primarily structured by distances among sites, C. bransfordii genetic variation was explained by resistance estimates from abundance and experiment data. Collectivity, this work demonstrates that common land uses can offer different levels of resistance to amphibian movements in Sarapiquí and illustrates the value of investigating local scales processes to inform interpretation of landscape-scale patterns.
Resumo:
Community metabolism was investigated using a Lagrangian flow respirometry technique on 2 reef flats at Moorea (French Polynesia) during austral winter and Yonge Reef (Great Barrier Reef) during austral summer. The data were used to estimate related air-sea CO2 disequilibrium. A sine function did not satisfactorily model the diel light curves and overestimated the metabolic parameters. The ranges of community gross primary production and respiration (Pg and R; 9 to 15 g C m-2 d-1) were within the range previously reported for reef flats, and community net calcification (G; 19 to 25 g CaCO3 m-2 d-1) was higher than the 'standard' range. The molar ratio of organic to inorganic carbon uptake was 6:1 for both sites. The reef flat at Moorea displayed a higher rate of organic production and a lower rate of calcification compared to previous measurements carried out during austral summer. The approximate uncertainty of the daily metabolic parameters was estimated using a procedure based on a Monte Carlo simulation. The standard errors of Pg,R and Pg/R expressed as a percentage of the mean are lower than 3% but are comparatively larger for E, the excess production (6 to 78%). The daily air-sea CO2 flux (FCO2) was positive throughout the field experiments, indicating that the reef flats at Moorea and Yonge Reef released CO2 to the atmosphere at the time of measurement. FCO2 decreased as a function of increasing daily irradiance.
Resumo:
Community metabolism was investigated using a Lagrangian flow respirometry technique on 2 reef flats at Moorea (French Polynesia) during austral winter and Yonge Reef (Great Barrier Reef) during austral summer. The data were used to estimate related air-sea CO2 disequilibrium. A sine function did not satisfactorily model the diel light curves and overestimated the metabolic parameters. The ranges of community gross primary production and respiration (Pg and R; 9 to 15 g C m-2 d-1) were within the range previously reported for reef flats, and community net calcification (G; 19 to 25 g CaCO3 m-2 d-1) was higher than the 'standard' range. The molar ratio of organic to inorganic carbon uptake was 6:1 for both sites. The reef flat at Moorea displayed a higher rate of organic production and a lower rate of calcification compared to previous measurements carried out during austral summer. The approximate uncertainty of the daily metabolic parameters was estimated using a procedure based on a Monte Carlo simulation. The standard errors of Pg,R and Pg/R expressed as a percentage of the mean are lower than 3% but are comparatively larger for E, the excess production (6 to 78%). The daily air-sea CO2 flux (FCO2) was positive throughout the field experiments, indicating that the reef flats at Moorea and Yonge Reef released CO2 to the atmosphere at the time of measurement. FCO2 decreased as a function of increasing daily irradiance.
Resumo:
We investigated the nonconsumptive effects (NCEs) of predatory dogwhelks (Nucella lapillus) on intertidal barnacle (Semibalanus balanoides) recruitment through field experiments on the Gulf of St. Lawrence coast and the Atlantic coast of Nova Scotia, Canada. We studied the recruitment seasons (May-June) of 2011 and 2013. In 2011, the Gulf coast had five times more nearshore phytoplankton (food for barnacle larvae and recruits) during the recruitment season and yielded a 58% higher barnacle recruit density than the Atlantic coast at the end of the recruitment season. In 2013, phytoplankton levels and barnacle recruit density were similar on both coasts and also lower than for the Gulf coast in 2011. Using the comparative-experimental method, the manipulation of dogwhelk presence (without allowing physical contact with prey) revealed that dogwhelk cues limited barnacle recruitment under moderate recruit densities (Atlantic 2011/2013 and Gulf 2013) but had no effect under a high recruit density (Gulf 2011). Barnacle recruits attract settling larvae through chemical cues. Thus, the highest recruit density appears to have neutralized dogwhelk effects. This study suggests that the predation risk perceived by settling larvae may decrease with increasing recruit density and that prey food supply may indirectly influence predator NCEs on prey recruitment.
Resumo:
Rhizon samplers were originally designed as micro-tensiometers for soil science to sample seepage water in the unsaturated zone. This study shows applications of Rhizons for porewater sampling from sediments in aquatic systems and presents a newly developed Rhizon in situ sampler (RISS). With the inexpensive Rhizon sampling technique, porewater profiles can be sampled with minimum disturbance of both the sediment structure and possible flow fields. Field experiments, tracer studies, and numerical modeling were combined to assess the suitability of Rhizons for porewater sampling. It is shown that the low effort and simple application makes Rhizons a powerful tool for porewater sampling and an alternative to classical methods. Our investigations show that Rhizons are well suited for sampling porewater on board a ship, in a laboratory, and also for in situ sampling. The results revealed that horizontally aligned Rhizons can sample porewater with a vertical resolution of 1 cm. Combined with an in situ benthic chamber system, the RISS allows studies of benthic fluxes and porewater profiles at the same location on the seafloor with negligible effect on the incubated sediment water interface. Results derived by porewater sampling of sediment cores from the Southern Ocean (Atlantic sector) and by in situ sampling of tidal flat sediments of the Wadden Sea (Sahlenburg/Cuxhaven, Germany) are presented.
Resumo:
This paper presents a solution to part of the problem of making robotic or semi-robotic digging equipment less dependant on human supervision. A method is described for identifying rocks of a certain size that may affect digging efficiency or require special handling. The process involves three main steps. First, by using range and intensity data from a time-of-flight (TOF) camera, a feature descriptor is used to rank points and separate regions surrounding high scoring points. This allows a wide range of rocks to be recognized because features can represent a whole or just part of a rock. Second, these points are filtered to extract only points thought to belong to the large object. Finally, a check is carried out to verify that the resultant point cloud actually represents a rock. Results are presented from field testing on piles of fragmented rock. Note to Practitioners—This paper presents an algorithm to identify large boulders in a pile of broken rock as a step towards an autonomous mining dig planner. In mining, piles of broken rock can contain large fragments that may need to be specially handled. To assess rock piles for excavation, we make use of a TOF camera that does not rely on external lighting to generate a point cloud of the rock pile. We then segment large boulders from its surface by using a novel feature descriptor and distinguish between real and false boulder candidates. Preliminary field experiments show promising results with the algorithm performing nearly as well as human test subjects.