907 resultados para Building heating systems
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Internet access by wireless networks has grown considerably in recent years. However, these networks are vulnerable to security problems, especially those related to denial of service attacks. Intrusion Detection Systems(IDS)are widely used to improve network security, but comparison among the several existing approaches is not a trivial task. This paper proposes building a datasetfor evaluating IDS in wireless environments. The data were captured in a real, operating network. We conducted tests using traditional IDS and achieved great results, which showed the effectiveness of our proposed approach.
Robust controller design of a wheelchair mobile via LMI approach to SPR systems with feedback output
Resumo:
This article discusses the design of robust controller applied to Wheelchair Furniture via Linear Matrix Inequalities (LMI), to obtain Strictly Positive Real (SPR) systems. The contributions of this work were the choice of a mathematical model for wheelchair: mobile with uncertainty about the position of the center of gravity (CG), the decoupling of the kinematic and dynamical systems, linearization of the models, the headquarters building of parametric uncertainties, the proposal of the control loop and control law with a specified decay rate.
Resumo:
In the United States the peak electrical use occurs during the summer. In addition, the building sector consumes a major portion of the annual electrical energy consumption. One of the main energy consuming components in the building sector is the Heating, Ventilation, and Air-Conditioning (HVAC) systems. This research studies the feasibility of implementing a solar driven underground cooling system that could contribute to reducing building cooling loads. The developed system consists of an Earth-to-Air Heat Exchanger (EAHE) coupled with a solar chimney that provides a natural cool draft to the test facility building at the Solar Energy Research Test Facility in Omaha, Nebraska. Two sets of tests have been conducted: a natural passively driven airflow test and a forced fan assisted airflow test. The resulting data of the tests has been analyzed to study the thermal performance of the implemented system. Results show that: The underground soil proved to be a good heat sink at a depth of 9.5ft, where its temperature fluctuates yearly in the range of (46.5°F-58.2°F). Furthermore, the coupled system during the natural airflow modes can provide good thermal comfort conditions that comply with ASHRAE standard 55-2004. It provided 0.63 tons of cooling, which almost covered the building design cooling load (0.8 tons, extreme condition). On the other hand, although the coupled system during the forced airflow mode could not comply with ASHRAE standard 55-2004, it provided 1.27 tons of cooling which is even more than the building load requirements. Moreover, the underground soil experienced thermal saturation during the forced airflow mode due to the oversized fan, which extracted much more airflow than the EAHE ability for heat dissipation and the underground soil for heat absorption. In conclusion, the coupled system proved to be a feasible cooling system, which could be further improved with a few design recommendations.
Resumo:
In molecular and atomic devices the interaction between electrons and ionic vibrations has an important role in electronic transport. The electron-phonon coupling can cause the loss of the electron's phase coherence, the opening of new conductance channels and the suppression of purely elastic ones. From the technological viewpoint phonons might restrict the efficiency of electronic devices by energy dissipation, causing heating, power loss and instability. The state of the art in electron transport calculations consists in combining ab initio calculations via Density Functional Theory (DFT) with Non-Equilibrium Green's Function formalism (NEGF). In order to include electron-phonon interactions, one needs in principle to include a self-energy scattering term in the open system Hamiltonian which takes into account the effect of the phonons over the electrons and vice versa. Nevertheless this term could be obtained approximately by perturbative methods. In the First Born Approximation one considers only the first order terms of the electronic Green's function expansion. In the Self-Consistent Born Approximation, the interaction self-energy is calculated with the perturbed electronic Green's function in a self-consistent way. In this work we describe how to incorporate the electron-phonon interaction to the SMEAGOL program (Spin and Molecular Electronics in Atomically Generated Orbital Landscapes), an ab initio code for electronic transport based on the combination of DFT + NEGF. This provides a tool for calculating the transport properties of materials' specific system, particularly in molecular electronics. Preliminary results will be presented, showing the effects produced by considering the electron-phonon interaction in nanoscale devices.
Resumo:
Traditional software engineering approaches and metaphors fall short when applied to areas of growing relevance such as electronic commerce, enterprise resource planning, and mobile computing: such areas, in fact, generally call for open architectures that may evolve dynamically over time so as to accommodate new components and meet new requirements. This is probably one of the main reasons that the agent metaphor and the agent-oriented paradigm are gaining momentum in these areas. This thesis deals with the engineering of complex software systems in terms of the agent paradigm. This paradigm is based on the notions of agent and systems of interacting agents as fundamental abstractions for designing, developing and managing at runtime typically distributed software systems. However, today the engineer often works with technologies that do not support the abstractions used in the design of the systems. For this reason the research on methodologies becomes the basic point in the scientific activity. Currently most agent-oriented methodologies are supported by small teams of academic researchers, and as a result, most of them are in an early stage and still in the first context of mostly \academic" approaches for agent-oriented systems development. Moreover, such methodologies are not well documented and very often defined and presented only by focusing on specific aspects of the methodology. The role played by meta- models becomes fundamental for comparing and evaluating the methodologies. In fact a meta-model specifies the concepts, rules and relationships used to define methodologies. Although it is possible to describe a methodology without an explicit meta-model, formalising the underpinning ideas of the methodology in question is valuable when checking its consistency or planning extensions or modifications. A good meta-model must address all the different aspects of a methodology, i.e. the process to be followed, the work products to be generated and those responsible for making all this happen. In turn, specifying the work products that must be developed implies dening the basic modelling building blocks from which they are built. As a building block, the agent abstraction alone is not enough to fully model all the aspects related to multi-agent systems in a natural way. In particular, different perspectives exist on the role that environment plays within agent systems: however, it is clear at least that all non-agent elements of a multi-agent system are typically considered to be part of the multi-agent system environment. The key role of environment as a first-class abstraction in the engineering of multi-agent system is today generally acknowledged in the multi-agent system community, so environment should be explicitly accounted for in the engineering of multi-agent system, working as a new design dimension for agent-oriented methodologies. At least two main ingredients shape the environment: environment abstractions - entities of the environment encapsulating some functions -, and topology abstractions - entities of environment that represent the (either logical or physical) spatial structure. In addition, the engineering of non-trivial multi-agent systems requires principles and mechanisms for supporting the management of the system representation complexity. These principles lead to the adoption of a multi-layered description, which could be used by designers to provide different levels of abstraction over multi-agent systems. The research in these fields has lead to the formulation of a new version of the SODA methodology where environment abstractions and layering principles are exploited for en- gineering multi-agent systems.
Resumo:
The high energy consumption caused by the building sector and the continuous growth and ageing of the existing housing stock show the importance of housing renovation to improve the quality of the environment. This research compares the environmental performance of flat roof systems (insulation, roofing membrane and covering layer) using Life Cycle Assessment (LCA). The aim is to give indications on how to improve the environmental performance of housing. This research uses a reference building located in the Netherlands and considers environmental impacts related to materials, energy consumption for heating and maintenance activities. It indicates impact scores for each material taking into account interconnections between the layers and between the different parts of the life cycle. It compares the environmental and economic performances of PV panels and of different materials and thermal resistance values for the insulation. These comparisons show that PV panels are convenient from an environmental and economic point of view. The same is true for the insulation layer, especially for materials as PIR (polyisocyanurate) and EPS (expanded polystyrene). It shows that energy consumption for heating causes a larger share of impact scores than production of the materials and maintenance activities. The insulation also causes larger impact scores comparing to roofing membrane and covering layer. The results show which materials are preferable for flat roof renovation and what causes the largest shares of impact. This gives indication to the roofers and to other stakeholders about how to reduce the environmental impact of the existing housing stock.
Resumo:
This doctoral dissertation aims to establish fiber-optic technologies overcoming the limiting issues of data communications in indoor environments. Specific applications are broadband mobile distribution in different in-building scenarios and high-speed digital transmission over short-range wired optical systems. Two key enabling technologies are considered: Radio over Fiber (RoF) techniques over standard silica fibers for distributed antenna systems (DAS) and plastic optical fibers (POFs) for short-range communications. Hence, the objectives and achievements of this thesis are related to the application of RoF and POF technologies in different in-building scenarios. On one hand, a theoretical and experimental analysis combined with demonstration activities has been performed on cost-effective RoF systems. An extensive modeling on modal noise impact both on linear and non-linear characteristics of RoF link over silica multimode fiber has been performed to achieve link design rules for an optimum choice of the transmitter, receiver and launching technique. A successful transmission of Long Term Evolution (LTE) mobile signals on the resulting optimized RoF system over silica multimode fiber employing a Fabry-Perot LD, central launch technique and a photodiode with a built-in ball lens was demonstrated up to 525m with performances well compliant with standard requirements. On the other hand, digital signal processing techniques to overcome the bandwidth limitation of POF have been investigated. An uncoded net bit-rate of 5.15Gbit/s was obtained on a 50m long POF link employing an eye-safe transmitter, a silicon photodiode, and DMT modulation with bit and power loading algorithm. With the insertion of 3x2N quadrature amplitude modulation constellation formats, an uncoded net-bit-rate of 5.4Gbit/s was obtained on a 50 m long POF link employing an eye-safe transmitter and a silicon avalanche photodiode. Moreover, simultaneous transmission of baseband 2Gbit/s with DMT and 200Mbit/s with an ultra-wideband radio signal has been validated over a 50m long POF link.
Resumo:
ABSTRACT Corundum is one of the most famous gems materials. Different heat treatment methods for enhancement purposes are commonly applied and accepted in the gem market. With this reason, the identification of the natural, unheated corundum is intensively investigated. In this study, aluminium hydroxide minerals and zircon are focused to observe the crystallization and phase change of these minerals during heat treatment procedures. Aluminium hydroxide minerals can be transformed to alumina with the corundum structure by heating. The reaction history of aluminium hydroxide minerals containing corundum was investigated comparing it with diaspore, boehmite, gibbsite and bayerite by TG and DTA methods. These hydroxide minerals were entirely transformed to corundum after heating at 600°C. Zircon inclusions in corundums from Ilakaka, Madagascar, were investigated for the influence of different heat-treatment temperatures on the recovery of their crystalline structure and on possible reactions within and with the host crystals. The host corundum was heated at 500, 800, 1000, 1200, 1400, 1600 and 1800°C. The crystallinity, the trapped pressure, and the decomposition of the zircon inclusions within the host corundum have been investigated by Raman spectroscopy. Radiation-damaged zircon inclusions may be used as an indicator for unheated Ilakaka corundum crystals. They are fully recrystallized after heating at 1000°C influencing the lowering of the 3 Raman band shift, the decreasing of FWHM of the 3 Raman band and the decreasing of the trapped pressure between the inclusion and the host corundum. Under microscopic observation, surface alterations of the inclusions can be firstly seen from transparent into frosted-like appearance at 1400°C. Then, between 1600°C and 1800 °C, the inclusion becomes partly or even completely molten. The decomposition of the zircon inclusion to m-ZrO2 and SiO2-glass phases begins at the rim of the inclusion after heating from 1200°C to 1600°C which can be detected by the surface change, the increase of the 3 Raman band position and the trapped pressure. At 1800°C, the zircon inclusions entirely melt transforming to solid phases during cooling like m-ZrO2 and SiO2-glass accompanied by an increase of pressure between the transformed inclusion and its host.
Resumo:
In this work supramolecular organic systems based on rigid pi-conjugated building blocks and flexible side chains were studied via solid-state NMR spectroscopy. Specifically, these studies focussed on phenylene ethynylene based macrocycles, polymer systems including polythiophenes, and rod-coil copolymers of oligo(p-benzamide) and poly(ethylene glycol). All systems were studied in terms of the local order and mobility. The central topic of this dissertation was to elucidate the role of the flexible side chains in interplay of different non-covalent interactions, like pi-pi-stacking and hydrogen bonding.Combining the results of this work, it can be concluded that the ratio of the rigid block and the attached alkyl side chains can be crucial for the design of an ordered pi-conjugated supramolecular system. Through alkyl side chains, it is also possible to introduce liquid-crystalline phases in the system, which can foster the local order of the system. Moreover in the studied system longer, unbranched alkyl side chains are better suited to stabilize the corresponding aggregation than shorter, branched ones.The combination of non-covalent interactions such as pi-pi-stacking and hydrogen bonding play an important role for structure formation. However, the effect of pi-pi-stacking interaction is much weaker than the effect of hydrogen bonding and is only observed in systems with a suitable local order. Hence, they are often not strong enough to control the local order. In contrast, hydrogen bonds predominantly influence the structural organization and packing. In comparison the size of the alkyl side chains is only of minor importance. The suppression of certain hydrogen bonds can lead to completely different structures and can induce a specific aggregation behavior. Thus, for the design of a supramolecular ordered system the presence of hydrogen bonding efficiently stabilizes the corresponding structure, but the ratio of hydrogen bond forming groups should be kept low to be able to influence the structure selectively.
Resumo:
The presented thesis revolves around the study of thermally-responsive PNIPAAm-based hydrogels in water/based environments, as studied by Fluorescence Correlation Spectroscopy (FCS).rnThe goal of the project was the engineering of PNIPAAm gels into biosensors. Specifically, a gamma of such gels were both investigated concerning their dynamics and structure at the nanometer scale, and their performance in retaining bound bodies upon thermal collapse (which PNIPAAm undergoes upon heating above 32 ºC).rnFCS’s requirements, as a technique, match the limitations imposed by the system. Namely, the need to intimately probe a system in a solvent, which was also fragile and easy to alter. FCS, on the other hand, both requires a fluid environment to work, and is based on the observation of diffusion of fluorescents at nanomolar concentrations. FCS was applied to probe the hydrogels on the nanometer size with minimal invasivity.rnVariables in the gels were addressed in the project including crosslinking degree; structural changes during thermal collapse; behavior in different buffers; the possibility of decreasing the degree of inhomogeneity; behavior of differently sized probes; and the effectiveness of antibody functionalization upon thermal collapse.rnThe evidenced results included the heightening of structural inhomogeneities during thermal collapse and under different buffer conditions; the use of annealing to decrease the inhomogeneity degree; the use of differently sized probes to address different length scale of the gel; and the successful functionalization before and after collapse.rnThe thesis also addresses two side projects, also carried forward via FCS. One, diffusion in inverse opals, produced a predictive simulation model for diffusion of bodies in confined systems as dependent on the bodies’ size versus the characteristic sizes of the system. The other was the observation of interaction of bodies of opposite charge in a water solution, resulting in a phenomenological theory and an evaluation method for both the average residence time of the different bodies together, and their attachment likelihood.
Resumo:
This dissertation deals with the design and the characterization of novel reconfigurable silicon-on-insulator (SOI) devices to filter and route optical signals on-chip. Design is carried out through circuit simulations based on basic circuit elements (Building Blocks, BBs) in order to prove the feasibility of an approach allowing to move the design of Photonic Integrated Circuits (PICs) toward the system level. CMOS compatibility and large integration scale make SOI one of the most promising material to realize PICs. The concepts of generic foundry and BB based circuit simulations for the design are emerging as a solution to reduce the costs and increase the circuit complexity. To validate the BB based approach, the development of some of the most important BBs is performed first. A novel tunable coupler is also presented and it is demonstrated to be a valuable alternative to the known solutions. Two novel multi-element PICs are then analysed: a narrow linewidth single mode resonator and a passband filter with widely tunable bandwidth. Extensive circuit simulations are carried out to determine their performance, taking into account fabrication tolerances. The first PIC is based on two Grating Assisted Couplers in a ring resonator (RR) configuration. It is shown that a trade-off between performance, resonance bandwidth and device footprint has to be performed. The device could be employed to realize reconfigurable add-drop de/multiplexers. Sensitivity with respect to fabrication tolerances and spurious effects is however observed. The second PIC is based on an unbalanced Mach-Zehnder interferometer loaded with two RRs. Overall good performance and robustness to fabrication tolerances and nonlinear effects have confirmed its applicability for the realization of flexible optical systems. Simulated and measured devices behaviour is shown to be in agreement thus demonstrating the viability of a BB based approach to the design of complex PICs.
Resumo:
Im Rahmen dieser Arbeit wurden Computersimulationen von Keimbildungs- und Kris\-tallisationsprozessen in rnkolloidalen Systemen durchgef\"uhrt. rnEine Kombination von Monte-Carlo-Simulationsmethoden und der Forward-Flux-Sampling-Technik wurde rnimplementiert, um die homogene und heterogene Nukleation von Kristallen monodisperser Hart\-kugeln zu untersuchen. rnIm m\"a\ss{ig} unterk\"uhlten Bulk-Hartkugelsystem sagen wir die homogenen Nukleationsraten voraus und rnvergleichen die Resultate mit anderen theoretischen Ergebnissen und experimentellen Daten. rnWeiterhin analysieren wir die kristallinen Cluster in den Keimbildungs- und Wachstumszonen, rnwobei sich herausstellt, dass kristalline Cluster sich in unterschiedlichen Formen im System bilden. rnKleine Cluster sind eher l\"anglich in eine beliebige Richtung ausgedehnt, w\"ahrend gr\"o\ss{ere} rnCluster kompakter und von ellipsoidaler Gestalt sind. rn rnIm n\"achsten Teil untersuchen wir die heterogene Keimbildung an strukturierten bcc (100)-W\"anden. rnDie 2d-Analyse der kristallinen Schichten an der Wand zeigt, dass die Struktur der rnWand eine entscheidende Rolle in der Kristallisation von Hartkugelkolloiden spielt. rnWir sagen zudem die heterogenen Kristallbildungsraten bei verschiedenen \"Ubers\"attigungsgraden voraus. rnDurch Analyse der gr\"o\ss{ten} Cluster an der Wand sch\"atzen wir zus\"atzlich den Kontaktwinkel rnzwischen Kristallcluster und Wand ab. rnEs stellt sich heraus, dass wir in solchen Systemen weit von der Benetzungsregion rnentfernt sind und der Kristallisationsprozess durch heterogene Nukleation stattfindet. rn rnIm letzten Teil der Arbeit betrachten wir die Kristallisation von Lennard-Jones-Kolloidsystemen rnzwischen zwei ebenen W\"anden. rnUm die Erstarrungsprozesse f\"ur ein solches System zu untersuchen, haben wir eine Analyse des rnOrdnungsparameters f\"ur die Bindung-Ausrichtung in den Schichten durchgef\"urt. rnDie Ergebnisse zeigen, dass innerhalb einer Schicht keine hexatische Ordnung besteht, rnwelche auf einen Kosterlitz-Thouless-Schmelzvorgang hinweisen w\"urde. rnDie Hysterese in den Erhitzungs-Gefrier\-kurven zeigt dar\"uber hinaus, dass der Kristallisationsprozess rneinen aktivierten Prozess darstellt.
Resumo:
Die letzten Jahrzehnte brachten eine Vielzahl neuer organischen Halbleiter hervor, welche erfolgreich als aktive Materialien in Bauteilen eingesetzt wurden, wie zum Beispiel Feldeffekttransistoren (FET), organische Leuchtdioden (OLED), organischen Photovoltaikzellen (OPV) und Sensoren. Einige dieser Materialien haben, obwohl sich die Technolgie noch in der „Pubertät“ befindet, die minimalen Anforderungen für eine kommerzielle Anwendung erreicht, wobei jedoch vieles noch zu entdecken, erklären und verstehen bleibt. Diese Arbeit beschreibt das Design, die Synthese und Charakterisierung neuartiger halbleitender Polymere mit speziell eingestellten optoelektronischen Eigenschaften, welche effiziente ambipolare oder n-Leitung in OFET’s und OPV’s zeigen. Das Hauptziel wurde dadurch erreicht, dass sowohl die vorteilhaften Eigenschaften des planaren, elektronenarmen heterozyklischen Bausteines Thiadiazolo[3,4-g]quinoxalin als auch von Ethinbrücken, welche den Donor (D) und den Akzeptor (A) in einem D-A-Copolymer verbinden, durch systematische Optimierung ausgenutzt wurden. Neben synthetischen Herausforderungen werden in dieser Arbeit auch detailiiete Untersuchungen der optoelektronischen Eigenschaften der hergestellten konjugierten Polymere und Modellverbindungen dargelegt. Darüber hinaus beschreibt diese Arbeit erstmals ein Beispiel für ein Polymer, welches Dreifachbindungen im Polymerrückgrat enthält, und nahezu eine ausgeglichene ambipolare Ladungsträgerleitung in OFET’s zeigt. Zusätzlich werden gemischt-valente Phenothiazine, verbrückt mittels elektronenarmen pi-Brücken wie etwa Benzo[c][2,1,3]thiadiazol, und deren Elektronentransferprozesse, im Rahmen der Marcus-Hush-Theorie, untersucht.