977 resultados para Bernardino Realino, Blessed, 1530-1616.
Resumo:
记述了新疆准噶尔盆地北缘中中新世哈拉玛盖组的两种阿特拉旱松鼠化石:Atlantoxerus junggarensis和A. xiyuensis sp. nov.。依据新的化石材料将A. junggarensis特征进行了修订。新种A. xiyuensis颊齿较小,齿冠低;P4大于或等于M1/2; 次尖明显,原小尖弱小或无,后小尖强大、明显大于后尖且一般不与后边脊相连,通常无中附尖;m3无下前边尖和前齿带,无下中尖、下中附尖和下次小尖,下后脊粗壮、由下原尖伸向跟凹、不与下后尖相连,下内尖及下内脊发育。Atlantoxerus属最早的化石记录出现在中亚地区,推测它很可能起源于中亚,然后向西亚、欧洲和北非地区扩散。依据伴生动物群和相关古植物的研究成果推测,Atlantoxerus属可能生活在温暖湿润的环境中。随着晚新生代全球气温变冷,该属的分布渐趋收缩,分异度减小,表明了其地理分布与温度变化密切相关。同时推测,温度对其生存的影响似乎比湿度更大。
Resumo:
近年来硅基光电子材料和器件受到高度的重视.利用外延生长和键合技术成功研制出硅基应变赝衬底、GexSi1-x/Si量子阱、高密度锗量子点、硅基InGaAsP/Si异质结,这些进展为硅基光电子器件提供了坚实的材料基础.同CMOS工艺相结合,实现了硅量子点1.17 μm的受激发射,研制出硅基Raman激光器、1.55 μm混合型激光器、高灵敏度的Si/Ge探测器、谐振腔增强型的SiGe光电二极管、调制频率30 GHz的SOI CMOS光学调制器和16×16的SOI光开关阵列等.硅光电子学将在光通信、光计算等领域获得重要应用.本文综述了国内外硅基光电子材料和器件的进展、我们的研究结果和硅基光电子学的发展趋势.
Resumo:
对于分布反馈激光器来说,光栅的耦合系数是一个重要参数. 利用改进的耦合波理论计算了具体器件结构中光栅形貌对二级光栅耦合系数的影响. 在此基础上制作的器件功率达到了单面50 mW,边模抑制比为36 dB.
Resumo:
采用超低压(22mbar)选择区域生长(Selective Area Growth,SAG)金属有机化学汽相沉积(Metal-organic Chemical Vapor Deposition,MOCVD)技术成功制备了高质量InGaAsP/InGaAsP多量子阱(Multiple Quantum Well,MQW)材料.在较小的掩蔽宽度变化范围内(15—30μm),得到了46nm的光荧光(Photoluminescence,PL)波长偏移量,PL半高宽(Full-Width-at-Half-Maximum,FWHM)小于30meV.为了保证选择区域内的MQWs材料的均匀性,我们采用了新型的渐变掩蔽图形,并且运用这种新型渐变掩蔽图形,研究了渐变区域的过渡效应对材料生长的影响.我们还观察到,渐变区域的能量偏调量随着掩蔽图形宽度与渐变区域长度比值的增大而出现饱和现象.
Resumo:
与折射率耦合分布的分布反馈(DFB)激光器相比,不管界面反射率是多少,增益耦合DFB激光器都能稳定地单纵模工作,而且具有高速、低啁啾的特性.本课题组用AlGaInAs/InP材料,采用增益耦合DFB结构,进行了单纵模激光器研发,并对器件特性进行了测试分析.
Resumo:
A novel method is reported for the detection of avian influenza virus subtype H5 using a biosensor based on high spatial resolution imaging ellipsometry (IE). Monoclonal antibodies specific to H5 hemagglutinin protein were immobilized on silicon wafers and used to capture virus particles. Resultant changes on the surface of the wafers were visualized directly in gray-scale on an imaging ellipsometry image. This preliminary study has shown that the assay is rapid and specific for the identification of avian influenza virus subtype H5. Compared with lateral-flow immunoassays, this biosensor not only has better sensitivity, but can also simultaneously perform multiplexed tests. These results suggest that this biosensor might be a valuable diagnostic toot for avian influenza virus detection. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Thermally induced evolution of phase transformations is a basic physical-chemical process in the dissociation of gas hydrate in sediment (GHS). Heat transfer leads to the weakening of the bed soil and the simultaneous establishment of a time varying stress field accompanied by seepage of fluids and deformation of the soil. As a consequence, ground failure could occur causing engineering damage or/and environmental disaster. This paper presents a simplified analysis of the thermal process by assuming that thermal conduction can be decoupled from the flow and deformation process. It is further assumed that phase transformations take place instantaneously. Analytical and numerical results are given for several examples of simplified geometry. Experiments using Tetra-hydro-furan hydrate sediments were carried out in our laboratory to check the theory. By comparison, the theoretical, numerical and experimental results on the evolution of dissociation fronts and temperature in the sediment are found to be in good agreement.
Resumo:
横断山地区是一个十分自然的植物区系地区,在中国植物区系分区中是作为泛北极植物区中国-喜马拉雅亚区中的一个地区,其种子植物区系具有丰富的科、属、种,地理成分复杂,特有现象和替代现象明显。该地区作为植物区系和生物多样性的研究热点地区,长期以来极受中外植物学家关注。横断山脉东缘是中国-喜马拉雅和中国-日本植物区系的交汇过渡区域,北部的岷江流域以及南部的金沙江流域,孕育了该区丰富的物种资源和植被资源。而岷江干热河谷和金沙江干热河谷的相似性和相关性,更为该区的植物区系和生物多样性南北的对比研究提供了有利的条件。 本研究选择的九顶山西坡和龙肘山分别位于横断山区北部和南部,九顶山属岷江流域而龙肘山属金沙江流域。本研究结合植物区系研究和生物多样性研究,对该区的植物资源进行调查。通过样带调查和样线踏查结合,大量详实的野外样方调查和标本采集,进行传统的区系研究和生物多样性研究。研究该区物种多样性的海拔梯度格局及其潜在的影响影子,并利用新的区系评估质量方法对九顶山西坡的植物区系质量进行定量的研究,以期能更为深刻的理解该区的植物资源,为该区的资源保护和利用提供合理可行的建议。主要研究结论如下: 1)九顶山西坡植物区系的性质和特点 经鉴定和统计,九顶山西坡共有1707 种维管植物,分属617 属和140 科,其中种子植物1616 种,分属572 属117 科。就科的分布区成分构成而言,该区系的热带成分与温带成分相当,热带成分略占优势,表明九顶山西坡的植物区系与热带植物区系有较强的联系。但是,在九顶山西坡属的分布区类型所占的比例上,温带成分远远超过了热带成分,本区的种子植物分布表现出明显的温带性质。且温带分布类型的许多物种组成了九顶山西坡植被的建群种和优势种,是本区系最重要的成分,充分体现了本区系的温带性质。 2)九顶山西坡不同植被带的生物多样性海拔梯度格局 基于对土门-断头崖、茶山-九顶山、雁门沟-光光山三条垂直植被样带的调查,我们发现九顶山西坡的生物多样性沿海拔梯度的变化呈现出一定的规律性,不同样带之间有一定差异。就三条样带的物种组成相似性来看,虽然土门-断头崖样带属于涪江水系,而茶山-九顶山样带和雁门沟-光光山样带属于岷江水系,但不同水系对该区物种组成的影响并不明显。三条样带中,草本层物种丰富度均远远大于灌木层和乔木层,而以乔木层物种丰富度最低;α-多样性指数随着海拔梯度的变化在土门-断头崖样带中呈现单一下降趋势,在茶山-九顶山样带表现为双峰模型,而在雁门沟-光光山样带则表现为不显著波动变化;均匀度指数在土门-断头崖样带呈现出单一下降的趋势,在雁门沟-光光山样带表现为凹形曲线,而在茶山-九顶山样带却无明显的变化规律。β-多样性指数在土门-断头崖样带和茶山-九顶山样带呈现出明显的波动状态,植被类型替代现象明显;而在雁门沟-光光山样带却并未有十分显著的转折点,因其水平植被带受到干扰,同海拔替代现象不显著。 3)九顶山西坡维管植物丰富度的海拔梯度格局 我们考察了九顶山西坡和两条垂直样带(土门-断头崖和雁门沟-光光山样带)的不同分类等级(包括科、属、种)和不同生活型物种(乔木、灌木、禾草、蕨类和其它草本)的丰富度沿着海拔梯度的分布。结果发现,物种的丰富度海拔梯度格局具有不同的模式,单一下降和中间膨胀格局依然是其主流。不同生活型的物种具有不同的丰富度格局,但是对于环境需求相似的类型具有较相似的丰富度格局。不同的丰富度格局可能由多因素导致,包括:气候,海拔跨度,面积,人为干扰等等。 4)九顶山西坡区系质量评估 我们尝试使用传统的区系质量评估方法对九顶山西坡的区系质量进行评估,并尝试使用一种新的区系质量评估体系对该区的区系进行评价。在九顶山西坡随着海拔梯度的上升,平均保守性系数在各条植被带中均呈现出逐渐上升的趋势。区系质量指数随着海拔的升高都表现为双峰模型,在植被交错区区系质量指数相对较高,而在海拔的两极,区系质量指数都很低。大部分地区使用新方法计算所得的加权平均保守性系数和区系质量指数都比传统方法计算的平均保收性系数和区系质量指数要高,说明在九顶山西坡的三条样带中,大部分地区都是那些保守性系数较高的物种占据优势,同时也表明九顶山西坡具有很高质量的区系和自然植被。 5)龙肘山种子植物区系的性质和特点 龙肘山种子植物区系的物种较为丰富,共有154 科,544 属,1156 种。科的优势十分明显,单种属和寡种属数量众多,说明本区系植物成分较为复杂、起源古老、物种多样性指数较高。地理成分复杂,分布类型多样,其中热带成分在总数量上高于温带成分,但是许多温带成分的属是该区植被的重要建群类群和优势类群,表现出明显的亚热带性质。 6)龙肘山生物多样性的现状和特点 在海拔梯度上,龙肘山地区无论是科、属、种的数量,还是不同等级分类单元之间的数量比,均呈现先升后降的趋势,并在中海拔地区达到峰值。物种多样性指数从总体上来说变化幅度不大,略有先升后降的趋势,在中海拔梯度物种多样性最高。乔、灌、草三层的多样性指数表现出乔木层<灌木层<草本层的特征;乔木层均匀度的变化很大,而灌木层和草本层均匀度的变化较小;灌木层均匀度的波动又强于草本层。β-多样性指数呈现单峰模式,中海拔地区最高。就龙肘山东、西坡物种多样性相比较而言,两者虽然在数值上交替上升,但是却体现出了较为一致的趋势,但西坡因受到干热河谷气候的影响,其平均气温要高于东坡,导致了东坡植物群落和物种的分布比西坡要低。在区系成分构成上,低山区的相同海拔段,西坡的热带亚热带成分所占的比例要比东坡高,这是因为西坡的平均气温比东坡稍高,导致了热带、亚热带物种分布更多。而随着海拔的上升,东、西两坡的气候、土壤等条件趋于一致,其植物区系成分的构成格局也趋于一致。 The Hengduan Mountain region is a very natural floristic region; it belongs toChina-Himalaya sub-region of Holarctic region in floristic subarea of China. The flora in this areais rich in family, genus and species; has a very complex composition of geographical elements;especially with high richness of endemic species and obvious substitution phenomenon. Thisregion as a hot-spot area of floristic and biodiversity, has fascinated biologists in the world for along time. The eastern range of Hengduan Mountain is the transition zone of China – Himalayaforest sub-region and China-Japan forest sub-region in floristic. The water systems are quitedifferent, Minjiang River in the north and Jishajiang River in the south grow quit different but alsoabundant plant species and vegetation resources. The similarity and correlativity of Minjiang River dry valleys and Jinshajiang River dry valleys have provided advantageous condition tocontrast flora and biodiversity between north and south. In the present study, the Jiuding Mountainlies in the north of Hengduan Mountain and belongs to Minjiang River, and the LongzhouMountain lies in the south of Hengduan Mountain and belongs to Jinshajiang River. In our study, we combined the methods of floristic research and biodiversity investigation toexplore the resources of plant species and vegetations; sampled with transects along the altitudinalgradients and also with transverse straps with similar elevation; collected the vascular plant specimen with sampling plots of ecology. We explored the plant species richness patterns alongaltitudinal gradients and discussed the underlying factors aroused these patterns; and used a novelmethod to assess the quality of Jiuding Mountain’s flora. All for a deeper comprehension of the plant recourses of this region; and provided feasible and reasonable suggestion for the protectionof resources. The results were as follows: 1 The characteristic of the flora of the west slope of Jiuding Mountain We had collected 1707 species of vascular plants belonging to 617 genera in 140 families inthe west slope of Jiuding Mountain,in which included 1616 seed plant species belonging to 572genera and 117 families. As for the composition of the areal types of the Families of seed plants,tropic components and temperate components are well-balanced, and percentage of tropicscomponents is higher than that of temperate ones for a litter bit. This shows the flora in the westslope of Jiuding Mountain has strong relationship with the tropic flora. But for the composition ofthe areal types of genera, temperate components have far exceeded the tropics ones, indicated thewhole flora with a conspicuous temperate character. Temperate components possess maximumproportion in the west slope of Jiuding Mountain, and many of them belong to constructivespecies and dominant species in the vegetation, are most important components in JiudingMountain’s Flora, also have embodied the temperate character of this area sufficiently. 2 Biodiversity patterns along altitudinal gradients in different vegetation transects in the westslope of Jiuding Mountain Based on the investigation of three vegetation transects (including Tumen-Duantouya transect,Chashan-Jiudingshan transect and Yanmengou-Guangguangshan Transect) in the west slope ofJiuding Mountain, we found the change of biodiversity along the altitude gradients displayedcertain regularity, but have differences among different transects. The three transects belong todifferent water systems; the Tumen-Duantouya transect belongs to Fujiang River, and the othertwo belong to Minjiang River. From the similarity of species compositions of different transects,we found different water system didn’t show obvious impact on the species composition. In all thethree transects, the species richness of herb layer was remarkably higher than shrub and tree layer,and the species richness of tree layer was the lowest one. With the increasing of the altitude, theline of α-diversity was monotonically decreasing curve in Tumen-Duantouya transect, andbimodal curve in Chashan-Jiudingshan transect, but in Yanmengou-Guangguangshan transectshowed a wave-like curve although not very obvious. Species evenness showed monotonicallydecreasing trends in Tumen-Duantouya transect, and very low at mid-altitude in Yanmengou-Guangguangshan transect, but in Chashan-Jiudingshan transect changed irregularly. Changes inβ-diversity corresponded with the transition of vegetation in the Tumen-Duantouya transect andChashan-Jiudingshan transect, and the curve of β-diversity along altitude had obvious turningpoint; but in Yanmengou-Guangguangshan transect had no obvious turning point, and thesubstitution phenomenon was not obvious, transverse vegetation straps distributed interlaced. 3 Richness patterns of vascular plant species along altitude in the west slope of Jiuding Mountain Direct gradient analysis and regression methods were used to describe the species richnesspatterns along the altitudinal for Mt. Jiuding, as well as separately for Tumen-Duantouya Transectand Yanmengou-Guangguangshan Transect. Altitudinal gradient of diversity of units at differenttaxonomic level (including Family, Genus and Species) and at different life form (including tree,shrub, pteridophyte, grass and other herb) were tested to find differences among the richnesspattern. We found altitudinal richness also shows different patterns, and both monotonicallydecreasing pattern and hump-shaped pattern can be founded in vascular species richness. Speciesin different life forms show different altitudinal patterns, but those species with similarrequirements to environmental conditions show similar richness patterns along altitudinalgradients. Different richness patterns can be aroused by different climate, different altitudinal span,area factor, anthropogenic factor and so on. 4 Floristic quality assessments in the west slope of Jiuding Mountain We used both the conventional method broadly adopted in the USA and the new one toassess the floristic quality in the west slope of Jiuding Mountain. The Mean Coefficient ofConservatism (MC) had the trend of increment along the altitudinal gradients. The FloristicQuality Index (FQI) was a bimodal curve with increasing of elevation; FQI got maximum valuesin the transition zones of different vegetations in the middle altitude, and had very low values atthe two end of elevation. In most areas of the west slope of the Jiuding Mountain, the resultscalculated using the new methods were higher than those using the conventional method. Thisindicated the dominant species of the communities had very high coefficients of conservatism inmost areas of Jiuding Mountain, and the communities are relatively kept pristine and the habitats very integrative. 5 The characteristic of the flora of Longzhou Mountain The flora of Longzhou Mountain has very abundant in species composition; there are about1156 species of seed plants belonging to 544 genera in 154 families. In which, twelve families with more than 20 species include totally 232 genera and 532 species, and form the majority of itsflora. The origin of its flora is old, monospecific genera and oligotypic genera amounts to 510 innumber, which constitute 93.75% of total number of genera. The geographical components arevarious in Longzhou Mountain, the majority of flora are temperate and pantropic ones. The tropiccomponents overtopped temperate components on genera quantity, but many temperatecomponents belong to constructive species and dominant species in the vegetation, and the wholeflora shows an obvious subtropical character. 6 Current situation and characteristic of biodiversity in Longzhou Mountain With the increasing of altitude, the number of species, genus, family and the ratios ofdifferent taxonomic levels all displayed a trend of descending after rising first, and peaked atmiddle height area. The change of α-diversity was not very acutely, with the trend of descendingafter rising first in some degree, the middle height area had highest α-diversity. As studying thetree layer, shrub layer and herb layer respectively, the Shannon-Wiener index was in followingorder: tree layer < shrub layer < herb layer; the change of evenness was more complicatedly thanthat of diversity, the tree layer changed acutely, but the shrub layer and herb layer fluctuatedsmoothly. Changes in β-diversity also showed the trend of descending after rising first. TheJaccard index and Cody index all peaked at the middle height forest area. As for the comparison ofplant diversity and evenness between the west and east slope, the numerical values ascendedalternatively, but the trend of changing was similar. The distribution of similar plant communitiesand species in east slope were lower than the west slope for the influence of Jinsha River DryValley. As for the composition of different floristic components, in lower altitude area of westslope, the tropic and sub-tropic plants had higher ratio than east slope’s and even could be equal tothe temperate plants. With the increasing of elevation, the floristic composition become morelikely between the east and west slope and temperate plants dominated the flora.
Resumo:
<正> 保护生态学从1969年沿用开始,一直作为一个概念和术语,没有发展成为一门有明确研究对象、范畴和方法论的独立学科。直到1993年由George W.Cox编辑,由Wm.C.Brown Publishers出版的《保护生态学:生物圈和生物存活》(Conservation Ecology:Biosphere and Biosurvival)才奠定了保护生态学理论和实践的基础。该书中G.W.Cox将传统生态学与其它相关学科的相关知识结合起来,运用了保护生物学的理论和方法。全书短小精悍,结构明快,共352页分为三大部分。第一部分回顾了生态学的概念,介绍了生态学的发展历史。接着介绍了"绝灭生态学"(The ecology of extinction),作者回顾了过去及近代生物的绝灭率,绝灭物种的生活史足迹等,认为:近代物种绝灭率由于人