930 resultados para B-Riesz Potential
Resumo:
Clade V nematodes comprise several parasitic species that include the cyathostomins, primary helminth pathogens of horses. Next generation transcriptome datasets are available for eight parasitic clade V nematodes, although no equine parasites are included in this group. Here, we report next generation transcriptome sequencing analysis for the common cyathostomin species, Cylicostephanus goldi. A cDNA library was generated from RNA extracted from 17 C. goldi male and female adult parasites. Following sequencing using a 454 GS FLX pyrosequencer, a total of 475,215 sequencing reads were generated, which were assembled into 26,910 contigs. Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, 27% of the transcriptome was annotated. Further in-depth analysis was carried out by comparing the C. goldi dataset with the next generation transcriptomes and genomes of other clade V nematodes, with the Oesophagostomum dentatum transcriptome and the Haemonchus contortus genome showing the highest levels of sequence identity with the cyathostomin dataset (45%). The C. goldi transcriptome was mined for genes associated with anthelmintic mode of action and/or resistance. Sequences encoding proteins previously associated with the three major anthelmintic classes used in horses were identified, with the exception of the P-glycoprotein group. Targeted resequencing of the glutamate gated chloride channel α4 subunit (glc-3), one of the primary targets of the macrocyclic lactone anthelmintics, was performed for several cyathostomin species. We believe this study reports the first transcriptome dataset for an equine helminth parasite, providing the opportunity for in-depth analysis of these important parasites at the molecular level. Sequences encoding enzymes involved in key processes and genes associated with levamisole/pyrantel and macrocyclic lactone resistance, in particular the glutamate gated chloride channels, were identified. This novel data will inform cyathostomin biology and anthelmintic resistance studies in future.
Resumo:
BACKGROUND: Assessing methodological quality of primary studies is an essential component of systematic reviews. Following a systematic review which used a domain based system [United States Preventative Services Task Force (USPSTF)] to assess methodological quality, a commonly used numerical rating scale (Downs and Black) was also used to evaluate the included studies and comparisons were made between quality ratings assigned using the two different methods. Both tools were used to assess the 20 randomized and quasi-randomized controlled trials examining an exercise intervention for chronic musculoskeletal pain which were included in the review. Inter-rater reliability and levels of agreement were determined using intraclass correlation coefficients (ICC). Influence of quality on pooled effect size was examined by calculating the between group standardized mean difference (SMD).
RESULTS: Inter-rater reliability indicated at least substantial levels of agreement for the USPSTF system (ICC 0.85; 95% CI 0.66, 0.94) and Downs and Black scale (ICC 0.94; 95% CI 0.84, 0.97). Overall level of agreement between tools (ICC 0.80; 95% CI 0.57, 0.92) was also good. However, the USPSTF system identified a number of studies (n = 3/20) as "poor" due to potential risks of bias. Analysis revealed substantially greater pooled effect sizes in these studies (SMD -2.51; 95% CI -4.21, -0.82) compared to those rated as "fair" (SMD -0.45; 95% CI -0.65, -0.25) or "good" (SMD -0.38; 95% CI -0.69, -0.08).
CONCLUSIONS: In this example, use of a numerical rating scale failed to identify studies at increased risk of bias, and could have potentially led to imprecise estimates of treatment effect. Although based on a small number of included studies within an existing systematic review, we found the domain based system provided a more structured framework by which qualitative decisions concerning overall quality could be made, and was useful for detecting potential sources of bias in the available evidence.
Resumo:
OBJECTIVES: We aimed to highlight the utility of novel dissolving microneedle (MN)-based delivery systems for enhanced transdermal protein delivery. Vaccination remains the most accepted and effective approach in offering protection from infectious diseases. In recent years, much interest has focused on the possibility of using minimally invasive MN technologies to replace conventional hypodermic vaccine injections.
METHODS: The focus of this study was exploitation of dissolving MN array devices fabricated from 20% w/w poly(methyl vinyl ether/maleic acid) using a micromoulding technique, for the facilitated delivery of a model antigen, ovalbumin (OVA).
KEY FINDINGS: A series of in-vitro and in-vivo experiments were designed to demonstrate that MN arrays loaded with OVA penetrated the stratum corneum and delivered their payload systemically. The latter was evidenced by the activation of both humoral and cellular inflammatory responses in mice, indicated by the production of immunoglobulins (IgG, IgG1, IgG2a) and inflammatory cytokines, specifically interferon-gamma and interleukin-4. Importantly, the structural integrity of the OVA following incorporation into the MN arrays was maintained.
CONCLUSION: While enhanced manufacturing strategies are required to improve delivery efficiency and reduce waste, dissolving MN are a promising candidate for 'reduced-risk' vaccination and protein delivery strategies.
Resumo:
The growth of wind power in some power systems is hampered by the system requirement for emergency reserve to cover loss of the biggest infeed. The study demonstrates that reserve provision from the wind sector itself has economic and operational benefits. A heuristic algorithm has been developed that can model the relevant aspects of emergency reserve provision in a system with both thermal and wind generations. The proposed algorithm is first validated by comparing its performance with established economic scheduling methods applied to a representative power system. The algorithm is then used to demonstrate the economic benefit of reserve provision from the wind sector. It is shown that such provision reduces wind energy curtailment and thermal unit ramping. Finally, it is shown that a wind sector capable of providing emergency reserve can expand economically beyond the capacity limit that would otherwise apply.
Resumo:
This study was carried out to assess the properties of vermiculites from Tanzania with respect to the temperature used to expand them. Vermiculites from five locations in the Mozambique Belt of Tanzania were sampled and heated at 15, 200, 400, 600 and 800 °C in a muffle furnace. Palabora Europe Ltd provided one sample for comparison from their South Africa deposit which provides vermiculite used worldwide as a soil amendment. Water release characteristic, cation exchange capacity, pH, mass loss, and bulk density were among the properties assessed. All six vermiculites responded differently on heating, and had a significant variation in their agronomic properties. Water release characteristic varied with the degree of exfoliation and phase composition. Although vermiculites from Tanzania expanded on heating, their capacity to retain plant available water was relatively low as compared to vermiculite from Palabora. Disintegration on heating and the presence of a high amount of iron could be among the factors affecting their water release characteristic. Loss of hydroxyl water was higher in vermiculites than in hydrobiotites. Dehydroxylation enhanced the availability of exchangeable K+ and reduced significantly the cation exchange capacity of vermiculites. The optimum exchangeable K+ was obtained on heating at a temperature of 600 °C. The pH was unaffected by heating to a temperature of less than 600 °C. At higher temperature, the pH increased in some samples and was accompanied by substantial amounts of exchangeable Mg2+. Thus, it was concluded that initial characterization of vermiculites is essential prior to potential agricultural applications in order to optimize their agronomic potential. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Although described almost a century ago, interest in ionic liquids has flourished in the last two decades, with significant advances in the understanding of their chemical, physical and biological property sets driving their widespread application across multiple and diverse research areas. Significant progress has been made through the contributions of numerous research groups detailing novel libraries of ionic liquids, often ‘task-specific’ designer solvents for application in areas as diverse as separation technology, catalysis and bioremediation. Basic antimicrobial screening has often been included as a surrogate indication of the environmental impact of these compounds widely regarded as ‘green’ solvents. Obviating the biological properties, specifically toxicity, of these compounds has obstructed their potential application as sophisticated designer biocides. A recent tangent in ionic liquids research now aims to harness tuneable biological properties of these compounds in the design of novel potent antimicrobials, recognising their unparalleled flexibility for chemical diversity in a severely depleted antimicrobial arsenal. This review concentrates primarily on the antimicrobial potential of ionic liquids and aims to consolidate contemporary microbiological background information, assessment protocols and future considerations necessary to advance the field in light of the urgent need for antimicrobial innovation.