983 resultados para Ativação policlonal
Resumo:
The midline/intralaminar nuclei form a remarkable group of nuclei of the medial and dorsal thalamus. The midline nuclei, in rats, comprises the paratenial nuclei (PT), paraventricular (PV), intermediodorsal (IMD), reuniens (Re) and rhomboid (Rh). The intralaminar nuclei comprises the central medial (CM), paracentral (PC), central lateral (CL) and parafascicular (PF). Such nuclei have dense serotonergic innervation originating from the brainstem, especially from the so-called ascending activation system. These nuclei, in turn, send projections to various cortical and subcortical areas, specifically to limbic areas, which suggests the important role of this neurotransmitter in the limbic circuitry. The aim of this study was to characterize the distribution pattern and morphology of serotonin fibers in the nuclei of the midline and intralaminar thalamic of rocky cavy (Kerodon rupestris), a tipical rodent from brazilizan northeast. To reach this aim we used four rock cavies adults. Following the transcardially perfusion with paraformaldehyde and brain microtomy steps was performed immunohistochemistry for serotonin (5-HT), Nissl technique and subsequent achievement and image analysis to characterize the cytoarchitecture of these nuclei and the serotonergic fibers visualized. An analysis was made of Relative Optical Density (ROD) to semi-quantify the concentration of serotonin fibers in the areas of interest. Thus, we observed a cytoarchitectonic arrangement of these nuclei similar to that found in rats. In case of fibers distribution, those immunoreactive to 5-HT were presented in a higher concentration according as ROD in the midline nuclei relative to intralaminar; Re being the core which has a higher pixel value followed by the PV , Rh, IMD and PT. In intralaminar CL showed higher pixels, followed by nuclei CM, PC and PF. The serotonergic fibers were classified as number of varicosities and axon diameter, therefore find three types of fibers distributed through this nuclear complex: fibers rugous, granular and semi-granular. In PV fibers predominated rugous; in PT fibers predominated granular; IMD, CL and PF fibers were represented by semi-granular and Re, Rh, PC and CM fibers showed granular and semi-granular. Morphological characterization of serotonergic fibers and differences in density between the nuclei may suggest different patterns of synaptic organization of this neurotransmitter beyond confirming his large repertoire functional
Resumo:
A permissividade complexa de filmes de poli(eter-eter-cetona) (PEEK) foram investigados num grande intervalo de frequência. Não foram observados picos de relaxação no intervalo de frequência de 1,0 Hz a 10(5) Hz, mas no intervalo de baixa frequência (10-4 Hz) há uma evidência de pico, o qual também pode ser observado com medidas de corrente de despolarização termo-estimulada (TSDC). Este pico está relacionado com a transição vítrea do polímero. A energia de ativação relacionada a esta relaxação dipolar foi obtida e ovalor é Ea = 0,44 eV, que é similar à energia de ativação de muitos polímeros sintéticos. As cargas espaciais se mostraram importantes no mecanismo de condução como evidenciado nas medidas da corrente de despolarização.
Resumo:
Neuropeptide S (NPS) is an endogenous 20-aminoacid peptide which binds a G protein-coupled receptor named NPSR. This peptidergic system is involved in the modulation of several biological functions, such as locomotion, anxiety, nociception, food intake and motivational behaviors. Studies have shown the participation of NPSR receptors in mediating the hyperlocomotor effects of NPS. A growing body of evidence suggests the participation of adenosinergic, dopaminergic and CRF systems on the hyperlocomotor effects of NPS. Considering that little is known about the role of dopaminergic system in mediating NPS-induced hyperlocomotion, the present study aims to investigate the locomotor actions of intracerebroventricular (icv) NPS in mice pretreated with α-metil-p-tirosine (AMPT, inhibitor of dopamine synthesis), reserpine (inhibitor of dopamine vesicle storage) or sulpiride (D2 receptor antagonist) in the open field test. A distinct group of animals received the same pretreatments described above (AMPT, reserpine or sulpiride) and the hyperlocomotor effects of methylphenidate (dopamine reuptake inhibitor) were investigated in the open field. NPS and methylphenidate increased the mouse locomotor activity. AMPT per se did not change the locomotion of the animals, but it partially reduced the hyperlocomotion of methylphenidate. The pretreatment with AMPT did not affect the psychostimulant effects of NPS. Both reserpine and sulpiride inhibited the stimulatory actions of NPS and methylphenidate. These findings show that the hyperlocomotor effects of methylphenidate, but not NPS, were affected by the pretreatment with AMPT. Furthermore, methylphenidate- and NPS-induced hyperlocomotion was impaired by reserpine and sulpiride pretreatments. Together, data suggests that NPS can increase locomotion even when the synthesis of catecholamines was impaired. Additionally, the hyperlocomotor effects of NPS and methylphenidate depend on monoamines vesicular storaged, mainly dopamine, and on the activation of D2 receptors. The psychostimulant effects of NPS via activation of dopaminergic system display clinical significance on the treatment of diseases which involves dopaminergic pathways, such as Parkinson s disease and drug addiction
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work biodiesel was gotten through the transesterification reaction using the oil of castor as source of triglycerides and using the methylic route for obtaining of esters. For the characterization of biodiesel and its mixtures with mineral diesel oil, physical chemical parameters and several analytical techniques had been used, as well as: gas chromatography (GC), nuclear magnetic resonance of proton (1H NMR), infrared spectroscopy (IR) and thermal analysis. The chromatography confirmed the complete reaction of esters in biodiesel presenting a 97,08% conversion. The 1H - NMR presented singlet in 3,6 ppm corresponding to the hydrogen of the group ester RCOO CH3. The infrared presented a strong band in 1741 cm-1 referring to stretching C=O of ester and an average band in 1175 cm-1 referring C O deformation. With the data of thermal analysis it was possible to observe the thermal and oxidative stability of the samples changing the atmospheres of synthetic air and nitrogen, where stages of the thermal decomposition had been verified and had been attributed to the volatilization and/or decomposition of the triacylglycerides. The thermal degradation of the samples was carried through 150 and 210°C during 1, 12, 24 and 48 hours and was observed change in the thermogravimetric profile, therefore an increase in the number of stages of the thermal decomposition also occurred indicating characteristic intermediate composites of polymerization, being this confirmed through the rheological study that presented brusque increase of viscosity. The kinetic study showed that the activation energy has the following order: biodiesel > mineral diesel oil > mixtures biodiesel/diesel
Resumo:
In last years it has talked a lot about the environment and the plastic waste produced and discarded. In last decades, the increasing development of research to obtain fuel from plastic material, by catalytic degradation, it has become a very attractive looking, as these tailings are discarded to millions worldwide. These materials take a long time to degrade themselves by ways said natural and burning it has not demonstrated a viable alternative due to the toxic products produced during combustion. Such products could bring serious consequences to public health and environment. Therefore, the technique of chemical recycling is presented as a suitable alternative, especially since could be obtain fractions of liquid fuels that can be intended to the petrochemical industry. This work aims to propose alternatives to the use of plastic waste in the production of light petrochemical. Zeolites has been widely used in the study of this process due to its peculiar structural properties and its high acidity. In this work was studied the reaction of catalytic degradation of high-density polyethylene (HDPE) in the presence HZSM-12 zeolites with different acid sites concentrations by thermogravimetry and pyrolysis coupled with GC-MS. The samples of the catalysts were mixed with HDPE in the proportion of 50% in mass and submitted to thermogravimetric analyses in several heating rates. The addition of solids with different acid sites concentrations to HDPE, produced a decrease in the temperature of degradation of the polymer proportional the acidity of the catalyst. These qualitative results were complemented by the data of activation energy obtained through the non-isothermal kinetics model proposed by Vyazovkin. The values of Ea when correlated to the data of surface acidity of the catalysts indicated that there is a exponential decrease of the energy of activation in the reaction of catalytic degradation of HDPE, in function of the concentration of acid sites of the materials. These results indicate that the acidity of the catalyst added to the system is one of the most important properties in the reaction of catalytic degradation of polyethylene
Resumo:
In present work, mesoporous materials of the M41S family were synthesized, which were discovered in the early 90s by researchers from Mobil Oil Corporation, thus allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal array of mesopores with pore diameters ranging from 2 to 10 nm and a high surface area, enabling it to become very promising for the use as a catalyst in the refining of oil in the catalytic cracking process, since the mesopores facilitate the access of large hydrocarbon molecules, thereby increasing the production of light products, that are in high demand in the market. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more beneficial for application in the petrochemical industry. The mesoporous materials MCM-41 and Al-MCM-41 (ratio Si / Al = 50) were synthesized through the hydrothermal method, starting with silica gel, NaOH and distilled water. CTMABr was used as template, for structural guiding. In Al-MCM-41 the same reactants were used, with the adding of pseudoboehmite (as a source of aluminum) in the synthesis gel. The syntheses were carried out over a period of four days with a daily adjustment of pH. The optimum conditions of calcination for the removal of the organic template (CTMABr) were discovered through TG / DTG and also through analysis by XRD, FTIR and Nitrogen Adsorption. It was found that both the method of hydrothermal synthesis and calcination conditions of the studies based on TG were promising for the production of mesoporous materials with a high degree of hexagonal array. The acidic properties of the materials were determined by desorption of n-butylamine via thermogravimetry. One proved that the addition of aluminum in the structure of MCM-41 promoted an increase in the acidity of the catalyst. To check the catalytic activity of these materials, a sample of Atmospheric Residue (RAT) that is derived from atmospheric distillation of oil from the Pole of Guamaré- RN was used. This sample was previously characterized by various techniques such as Thermogravimetry, FTIR and XRF, where through thermal analysis of a comparative study between the thermal degradation of the RAT, the RAT pyrolysis + MCM-41 and RAT + Al- MCM-41. It was found that the Al-MCM-41 was most satisfactory in the promotion of a catalytic effect on the pyrolysis of the RAT, as the cracking of heavy products in the waste occurred at temperatures lower than those observed for the pyrolysis with MCM-41, and thereby also decreasing the energy of activation for the process and increasing the rates of conversion of residue into lighter products
Resumo:
The search for new sources of environmentally friendly energy is growing every day. Among these alternative energies, biodiesel is a biofuel that has had prominence in world production. In Brazil, law 11.097, determine that all diesel sold in the country must be made by mixing diesel/biodiesel. The latter called BX, , where X represents the percent volume of biodiesel in the diesel oil, as specified by the ANP. In order to guarantee the quality of biodiesel and its mixtures, the main properties which should be controlled are the thermal and oxidative stability. These properties depend mainly of the chemical composition on the raw materials used to prepare the biodiesel. This dissertation aims to study the overall thermal and oxidative stability of biodiesel derived from cotton seed oil, sunflower oil, palm oil and beef tallow, as well as analyze the properties of the blends made from mineral oil and biodiesel in proportion B10. The main physical-chemical properties of oils and animal fat, their respective B100 and blends were determined. The samples were characterized by infrared and gas chromatography (GC). The study of thermal and oxidative stability were performed by thermogravimetry (TG), pressure differential scanning calorimeter (PDSC) and Rancimat. The obtained biodiesel samples are within the specifications established by ANP Resolution number 7/2008. In addition, all the blends and mineral diesel analyzed presented in conformed withthe ANP Regularion specifications number 15/2006. The obtained results from TG curves data indicated that the cotton biodiesel is the more stable combustible. In the kinetic study, we obtained the following order of apparent activation energy for the samples: biodiesel from palm oil > sunflower biodiesel > tallow biodiesel > cotton biodiesel. In terms of the oxidative stability, the two methods studied showed that biodiesel from palm oil is more stable then the tallow. Within the B100 samples studied only the latter were tound to be within the standard required by ANP resolution N° 7. Testing was carried out according to the EN14112. This higher stability its chemical composition
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Dynamic light scattering was used to monitor relaxation processes in chitosan solutions at concentrations within the semi-dilute and concentrated regimes, Kowhlrausch-Williams-Watts (KWW) equation being successfully fitted to intensity correlation function data. The dependence of KWW equation parameters on chitosan concentration indicated that an increase in concentration from semi-dilute to concentrated regimes resulted in narrowing the distribution of relaxation rates; temperature dependence indicated the relaxation process as described as an energy activated process, whose parameters were function of the interaction between chitosan chains (enthalpy of activation) and rigidity of chitosan conformations (pre-exponential factor)
Resumo:
O recente interesse em se obter materiais nanoporosos funcionalizados para aplicações como calisadores heterogêneos e adsorção de CO2, tem aumentado no meio industrial e cientifico. Nesta última aplicação, a introdução de grupos aminas, como os presentes em quitosana, em materiais nanoporosos do tipo SBA-15 para gerar interações específicas com o CO2 tem ganhado importância. Assim, neste trabalho foram realizadas a síntese do SBA-15 e posterior impregnação da CS no suporte mesoporoso através do método de impregnação por via úmida. Os materiais obtidos foram caracterizados por meio DRX, TG, DSC, MEV, FTIR e adsorção/dessorção de N2. Os resultados de DRX indicaram que a estrutura ordenada do suporte SBA-15 foi preservada após a impregnação e os cálculos mostraram que o diâmetro médio do poro e/ou a espessura média da parede (wt) foram alterados devido a introdução da quitosana nas amostras funcionalizadas. As curvas de TG e de DSC,corroboraram com os dados de DRX, indicando a presença da quitosana na estrutura mesoporosa do SBA-15, assim como as micrografias das amostras funcionalizadas, que possibilitou visualizar o estado de agregação do material obtido. As bandas características de absorção da CS na região IV foram identificadas e interpretadas nas amostras funcionalizadas confirmando as outras caracterizações. Foi visto também que a área superficial diminuiu nas amostras funcionalizadas, indicando a sucessiva incorporação do polímero no suporte mesoporoso. A energia de ativação do processo de degradação térmica da quitosana impregnada no suporte foi determinada por meio do método de cinética livre de Viazovkin e pelo método de Ozawa-Flay-Wall com os resultados indicando que o aumento da quitosana diminui em aproximadamente 10% a energia de ativação para sua degradação.
Resumo:
The recent interest in obtaining functionalized nanoporous materials for applications such as heterogeneous catalysts and adsorption of CO2 has increased today. In the latter application, the introduction of amino groups such as present in the chitosan (CS), in the nanoporous materials like SBA-15 to generate specific interactions with CO2 has gained importance. In this work were performed to hydrothermal synthesis of SBA-15 and subsequent impregnation of the CS in the support mesoporous by the method of the wet impregnation. The materials were characterized by TG/DTG, DSC, XRD, SEM, FTIR and adsorption / desorption of N2. The XRD showed that the ordered structure of the support SBA-15 was preserved after the impregnation and calculations have shown that the average pore diameter (Dp) and / or the average wall thickness (wt) have been changed due to introduction of the CS in the samples functionalized. The curves of TG and DSC data corroborates the XRD, indicating the presence of CS in the nanoporous structure of SBA-15, as well as micrographs of samples, which allowed the display state of aggregation of the material obtained. The characteristics of bands absorption in the region of the CS in the FTIR were identified and interpreted in the samples functionalized, confirming the further characterization. Measurements showed that the BET surface area decreases in the functionalized samples, indicating the successive incorporation of the polymer in the nanoporous support. The activation energy apparent (Ea) for the process of thermal degradation of CS in the impregnated support was determined by the methods of kinetic freedom Vyazovkin and Ozawa-Flynn-Wall with the results indicating that the sample functionalized CS/SBA-15 2,5 % was decrease of the Ea in their degradation of about 10% compared to 1,0 % CS/SBA-15 sample
Resumo:
Microporous materials zeolite type Beta and mesoporous type MCM-41 and AlMCM-41 were synthesized hydrothermally and characterized by methods of X-ray diffraction, Fourier transform infrared, scanning electron microscopy, surface acidity, nitrogen adsorption, thermal analysis TG / DTG. Also we performed a kinetic study of sunflower oil on micro and mesoporous catalysts. The microporous material zeolite beta showed a lower crystallinity due to the existence of smaller crystals and a larger number of structural defects. As for the mesoporous materials MCM-41 and AlMCM-41 samples showed formation of hexagonal one-dimensional structure. The study of kinetic behavior of sunflower oil with zeolite beta catalysts, AlMCM-41 and MCM-41 showed a lower activation energy in front of the energy of pure sunflower oil, mainly zeolite beta. In the thermal cracking and thermocatalytic of sunflower oil were obtained two liquid fractions containing an aqueous phase and another organic - organic liquid fraction (FLO). The FLO first collected in both the thermal cracking as the thermocatalytic, showed very high level of acidity, performed characterizations of physicochemical properties of the second fraction in accordance with the specifications of the ANP. The second FLO thermocatalytic collected in cracking of sunflower oil presented results in the range of diesel oil, introducing himself as a promising alternative for use as biofuel liquid similar to diesel, either instead or mixed with it
Resumo:
Chemical modification of clays has been extremely studied in the search for improvements of their properties for use in various areas, such as in combating pollution by industrial effluents and dyes. In this work, the vermiculite was chemically modified in two ways, characterized and evaluated the adsorption of methylene blue dye. First was changed with the addition of a surfactant (hexadecyltrimethylammonium bromide, BHTA) making it an organophilic clay and then by adding an acid (HCl) by acid activation. Some analyzes were performed as X-ray fluorescence (FRX), X-ray diffraction (DRX), adsorption isotherms of methylene blue dye, infrared (FTIR) , scanning electron microscopy (SEM), thermal gravimetric analysis and spectroscopy energy dispersive (EDS). Analysis by FRX of natural vermiculite indicates that addition of silicon and aluminum, clay presents in its structure the magnesium, calcium and potassium with 16 % organic matter cations. The DRX analyzes indicated that the organic vermiculite was an insertion of the surfactant in the space between the lamellae, vermiculite and acid partial destruction of the structure with loss of crystallinity. The adsorption isotherms of methylene blue showed that there was a significant improvement in the removal of dye to the vermiculite with the addition of cationic surfactant hexadecyltrimethylammonium bromide and treatment with acid using HCl 2 mol/L. In acid vermiculites subsequently treated with surfactant, the adsorption capacity increased with respect to natural vermiculite, however was much lower compared vermiculite modified with acid and surfactant separately. Only the acidic vermiculite treated with surfactant adjusted to the Langmuir model. As in the infrared spectrometry proved the characteristics of natural vermiculite. In the organic vermiculite was observed the appearance of characteristic bands of CH3, CH2, and (CH3)4N. Already on acid vermiculite, it was realized a partial destruction with decreasing intensity of the characteristic band of vermiculite that is between 1074 and 952 cm-1. In the SEM analysis, it was observed that there was partial destruction to the acid treatment and a cluster is noted between the blades caused by the presence of the surfactant. The TG shows that the higher mass loss occurs at the beginning of the heating caused by the elimination of water absorbed on the surface between layers. In the organic vermiculite also observed a loss of mass between 150 and 300 °C caused decomposition of the alkylammonium molecules (surfactants)
Resumo:
Surfactant-polymer interactions are widely used when required rheological properties for specific applications, such as the production of fluids for oil exploration. Studies of the interactions of chitosan with cationic surfactants has attracted attention by being able to cause changes in rheological parameters of the systems making room for new applications. The commercial chitosan represents an interesting alternative to these systems, since it is obtained from partial deacetylation of chitin: the residues sites acetylated can then be used for the polymer-surfactant interactions. Alkyl ethoxylated surfactants can be used in this system, since these non-ionic surfactants can interact with hydrophobic sites of chitosan, modifying the rheology of solutions or emulsions resultants, which depends on the relaxation phenomenon occurring in these systems. In this work, first, inverse emulsions were prepared from chitosan solution as the dispersed phase and cyclohexane as the continuous phase were, using CTAB as a surfactant. The rheological analysis of these emulsions showed pronounced pseudoplastic behavior. This behavior was attributed to interaction of "loops" of chitosan chains. Creep tests were also performed and gave further support to these discussions. Subsequently, in order to obtain more information about the interaction of chitosan with non-ionic surfactants, solutions of chitosan were mixed with C12E8 and and carried out rheological analysis and dynamic light scattering. The systems showed marked pseudoplastic behavior, which became less evident when the concentration of surfactant was increased. Arrhenius and KWW equations were used to obtain parameters of the apparent activation energy and relaxation rate distribution, respectively, to which were connected to the content of surfactant and temperature used in this work