424 resultados para Astrononion guadalupae


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep-sea benthic foraminiferal faunas were studied from Sites 608 (depth 3534 m, 42°50'N, 23°05'W) and 610 (depth 2427 m, 53°13'N, 18°53'W). The sampling interval corresponded to 0.1 to 0.5 m.y. at Site 608 and in the sections of Site 610 from which core recovery was continuous. First and last appearances of benthic foraminiferal taxa are generally not coeval at the two sites, although the faunal patterns are similar and many species occur at both sites. Major periods of changes in the benthic faunas, as indicated by the numbers of first and last appearances and changes in relative abundances, occurred in the early Miocene (19.2-17 Ma), the middle Miocene (15.5-13.5 Ma), the late Miocene (7-5.5 Ma), and the Pliocene-Pleistocene (3.5-0.7 Ma). A period of minor changes in the middle to late Miocene (10-9 Ma) was recognized at Site 608 only. These periods of faunal changes can be correlated with periods of paleoceanographic changes: there was a period of sluggish circulation in the northeastern North Atlantic from 19.2 to 17 Ma, and the deep waters of the oceans probably cooled between 15.5 and 13.5 Ma, as indicated by an increase in delta18O values in benthic foraminiferal tests. The period between 10 and 9 Ma was probably characterized by relatively vigorous bottom-water circulation in the northeastern Atlantic, as indicated by the presence of a widespread reflector. The faunal change at 7 to 5.5 Ma corresponds in time with a worldwide change in delta13C values, and with the Messinian closing of the Mediterranean. The last and largest faunal changes correspond in time with the onset and intensification of Northern Hemisphere glaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the quantitative composition of benthic foraminiferal assemblages of Rose Bengal-stained surface samples from 37 stations in the Laptev Sea, and combine this data set with an existing data set along a transect from Spitsbergen to the central Arctic Ocean. Foraminiferal test accumulation rates, diversity, faunal composition and statistically defined foraminiferal associations are analysed for living (Rose Bengal-stained) and dead foraminifers. We compare the results of several benthic foraminiferal diversity indices and statistically defined foraminiferal associations, including Fisher's alpha and Shannon-Wiener diversity indices, Q-mode principal component analysis and correspondence analysis. Diversity and faunal density (standing stock) of living benthic foraminifers are positively correlated to trophic resources. In contrast, the accumulation rate of dead foraminifers (BFAR) shows fluctuating values depending on test disintegration processes. Foraminiferal associations defined by Q-mode principal component analysis and correspondence analysis are comparable. The factor values of the correspondence analysis allow a quantitative correlation between the foraminiferal fauna and the local carbon flux, which may be used as a tool to estimate changes in primary productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution study of palaeoenvironmental changes through the late Younger Dryas and early Holocene in the Skagerrak, the eastern North Atlantic, is based on multi-proxy analyses of core MD99-2286 combined with palaeo-water depth modelling for the area. The late Younger Dryas was characterized by a cold ice-distal benthic foraminiferal fauna. After the transition to the Preboreal (c. 11 650 cal. a BP) this fauna was replaced by a Cassidulina neoteretis dominated fauna, indicating the influence of chilled Atlantic Water at the sea floor. Persisting relatively cold bottom-water conditions until c. 10 300 cal. a BP are presumably a result of an outflow of glacial meltwater from the Baltic area across south-central Sweden, which develops a strong stratification of the water column at MD99-2286. A short-term peak in the C/N ratio at c. 10 200 cal. a BP is suggested to indicate input of terrestrial material, which may represent the drainage of an ice-dammed lake in southern Norway, the Glomma event. After the last drainage route across south-central Sweden closed, c. 10 300 cal. a BP, the meltwater influence diminished, and the Skagerrak resembled a fjord with stable inflow of waters from the North Atlantic through the Norwegian Channel and a gradual increase in boreal species. Full interglacial conditions were established at the sea floor from c. 9250 cal. a BP. Subsequent warm stable conditions were interrupted by a short-term cooling around 8300-8200 cal. a BP, representing the 8.2 ka event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed study of four Holocene sediment intervals from Ocean Drilling Program Site 1098 (Palmer Deep, Antarctic Peninsula) reveals that in situ dissolution of calcareous foraminifers in the core repository has significantly altered and in some cases eliminated calcareous foraminifers. Despite dissolution, the foraminifer and supporting diatom data show that the most open-ocean and reduced sea-ice conditions occurred in the early Holocene. The influence of Circumpolar Deep Water was greatest during the early Holocene but continued to be important throughout the Holocene. An increase in sea-ice proximal diatoms at 3500 cal. BP documents an expansion in the amount of persistent sea ice. The inferred increase in sea ice corresponds with an overall increase in magnetic susceptibility values. Benthic foraminifers are present in all samples from the Palmer Deep, including the middle Holocene pervasively laminated sediments with low magnetic susceptibility values. The consistent presence of mobile epifaunal benthic foraminifers in the laminated sediments demonstrates that the laminations do not represent anoxic conditions. The uniform composition of the agglutinated foraminifer fauna throughout the late Holocene suggests that the Palmer Deep did not experience bottom-water-mass changes associated with the alternating deposition of bioturbated or laminated sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Living (Rose Bengal stained) benthic foraminifera were collected with a multicorer from six stations between 2°N and 12°S off West Africa. The foraminiferal communities in the investigated area reflect the direct influence of different productivity regimes, and are characterized by spatially and seasonally varying upwelling activity. At five stations, foraminiferal abundance coincides well with the gradient of surface productivity. However, at one station off the Congo River, the influence of strong fresh water discharge is documented. Although this station lies directly in the center of an upwelling area, foraminiferal standing stocks are surprisingly low. It is suggested that the Congo discharge may induce a fractionation of the organic matter into small and light particles of low nutritional content, by contrast to the relatively fast-sinking aggregates found in the centers of high productivity areas. Quality and quantity of the organic matter seem to influence the distribution of microhabitats as well. The flux of organic carbon to the sea-floor controls the sequence of degradation of organic matter in sediment and the position of different redox fronts. The vertical foraminiferal stratification within sediment closely parallels the distribution of oxygen and nitrate in porewater, and reflects different nutritive strategies and adaptation to different types of organic matter. The epifauna and shallow infauna colonize oxygenated sediments where labile organic matter is available. The intermediate infauna (M. barleeanum) is linked to the zone of nitrate reduction in sediments where epifaunal and shallow infaunal species are not competitive anymore, and must feed on bacterial biomass or on metabolizable nutritious particles produced by bacterial degradation of more refractory organic matter. The deep infauna shows its maximum distribution in anoxic sediments, where no easily metabolizable organic matter is available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multivariate analysis was performed on percentages of 46 species of unstained deep-sea benthic foraminifera from 131 core-top to near-core-top samples (322-5013 m) from across the Indian Ocean. Faunal data are combined with GEOSECS geochemical data to investigate any relationship between benthic foraminifera (assemblages and species) and deep-sea properties. In general, benthic foraminifera show a good correlation to surface productivity, organic carbon flux to the sea floor, deep-sea oxygenation and, to a lesser extent, to bottom temperature, without correlation with the water depths. The foraminiferal census data combined with geochemical data has enabled the division of the Indian Ocean into two faunal provinces. Province A occupies the northwestern Indian Ocean (Arabian Sea region) where surface primary production has a major maximum during the summer monsoon season and a secondary maximum during winter monsoon season that leads to high organic flux to the seafloor, making the deep-sea one of the most oxygen-deficient regions in the world ocean, with a pronounced oxygen minimum zone (OMZ). This province is dominated by benthic foraminifera characteristic of low oxygen and high organic food flux including Uvigerina peregrina, Robulus nicobarensis, Bolivinita pseudopunctata, Bolivinita sp., Bulimina aculeata, Bulimina alazanensis, Ehrenbergina carinata and Cassidulina carinata. Province B covers southern, southeastern and eastern parts of the Indian Ocean and is dominated by Nuttallides umbonifera, Epistominella exigua, Globocassidulina subglobosa, Uvigerina proboscidea, Cibicides wuellerstorfi, Cassidulina laevigata, Pullenia bulloides, Pullenia osloensis, Pyrgo murrhina, Oridorsalis umbonatus, Gyroidinoides (= Gyroidina) soldanii and Gyroidinoides cf. gemma suggesting well-oxygenated, cold deep water with low (oligotrophic) and pulsed food supply.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study of Recent abyssal benthic foraminifera from core-top samples in the eastern equatorial Indian Ocean has identified distinctive faunas whose distribution patterns reflect the major hydrographic features of the region. Above 3800 m, Indian Deep Water (IDW) is characterized by a diverse and evenly-distributed biofacies to which Globocassidulina subglobosa, Pyrgo spp., Uvigerina peregrina, and Eggerella bradyi are the major contributors. Nuttalides umbonifera and Epistominella exigua are associated with Indian Bottom Water (IBW) below 3800 m. Within the IBW fauna, N. umbonifera and E. exigua are characteristic of two biofacies with independent distribution patterns. Nuttalides umbonifera systematically increases in abundance with increasing water depth. The E. exigua biofacies reaches its greatest abundance in sediments on the eastern flank of the Ninetyeast Ridge and in the Wharton-Cocos Basin. The hydrographic transition between IDW and IBW coincides with the level of transition from waters supersaturated to waters undersaturated with respect to calcite and with the depth of the lysocline. Carbonate saturation levels, possibly combined with the effects of selective dissolution on the benthic foraminiferal populations, best explain the change in faunas across the IDW/IBW boundary and the bathymetric distribution pattern of N. umbonifera. The distribution of the E. exigua fauna cannot be explained with this model. Epistominella exigua is associated with the colder, more oxygenated IBW of the Wharton-Cocos Basin. The distribution of this biofacies on the eastern flank of the Ninetyeast Ridge agrees well with the calculated bathymetric position of the northward flowing deep boundary current which aerates the eastern basins of the Indian Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Correlation of paleoceanographic events in several key regions of the World Ocean: North Atlantic, Antarctic, West Arctic Seas, North Pacific and tropical Indo-Pacific has been carried out for the last 135 ka based on micropaleontological, stable isotope, geochronological (AMS-14C) and other data. It has been shown that the global thermohaline circulation controls remote climatic teleconnections on millennial-scale and partly on centennial-scale, while short-term climate changes are mainly transferred by the atmosphere. The basic information is given about the recent thermohaline circulation and stages of its development during Neogene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of deep-sea benthonic foraminifera in core top samples from the southwest Indian Ocean is examined. Principal component analysis reveals two major assemblages. One assemblages between 3600 and 4800-m water depth is dominated by Episominella umbonifera and is associated with cold (Theta = -0.3 to 0.8°C), low salinity (34.66 to 34.72 * 10**-3) Antarctic Bottom Water in the Crozet Basin, in fracture zones, and on the flanks of the Southwest Indian Ridge. A second assemblage, dominated by Planulina wuellerstorfi, Globocassidulina subglobasa, Astrononion echolsi and Pullenia bulloides, is between 1600 and 3800 m on the Crozet Plateau, Madagascar Ridge, Central Indian Ridge, and Southwest Indian Ridge and is associated with relatively warm (Theta = 0.8 to 2.6°C), high salinity (34.72 to 34.76 * 10**-3) North Atlantic Deep Water. The third principal component divides the P. wuellerstorfi assemblage into two subgroups. One is dominated by Epistominella exigua, P. bulloides, P. wuellerstorfi, and A. echolsi and a second is dominated by G. subglobosa. The distribution of the E. umbonifera assemblage and previous hydrographic studies suggest that AABW flows as a western boundary contour current in the Crozet Basin and penetrates fracture zones in the Southwest Indian Ridge between 55 and 57°E and near 66°E as it travels northward into the Madagascar and Mascarene basins. The faunal-water mass associations from the southeast Indian Ocean are compared; the most notable faunal difference is the absence of Uvigerina as a dominant taxon in the southwest Indian Ocean. A comparison of dissolved oxygen and Uvigerina data shows that oxygen is not a major influence upon the distribution of Uvigerina. A correlation analysis of the faunal data and water depth, potential temperature, in situ temperature, salinity, dissolved oxygen, and 1 - Omega, an index of calcium carbonate undersaturation, was carried out to determine the relationships between fauna and hydrography. The second principal component has a significant positive correlation at the 99.9% level with temperature and negative correlations with water depth and 1 - Omega. A general faunal-water mass correlation exists, but it is not possible to determine which variable controls the faunal distributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

a) In der horizontalen Verbreitung sind die vorwiegend kalkschaligen Benthos-Foraminiferen im Untersuchungsgebiet auf zwei Faciesbereiche verteilt: 1. Eine sandige Facies mit stärkeren Temperatur- und Salzgehaltschwankungen; Wasseroberfläche t = 2O-17°C, Salzgehalt nie über 32 per mil, Meerestiefe 30 bis 92 m. 2. Schlick-Facies mit zum Teil feinsandigen Beimengungen. Temperatur- und Salzgehaltschwankungen sind geringer; Wasseroberfläche t = ca. 4O-15° C, Salzgehalt bis 34 per mil, Meerestiefe 135-548 m. b) Einige Stoßröhren-Proben (Station 18, 21, 27, 28) zeigen in ihrer vertikalen Verbreitung auffallende Faunenunterschiede. c) Im Profil des Lotkerns wechseln in der Foraminiferenfauna Bolivinen- und Cassidulinen-Nonioninen-Provinzen miteinander ab. Die Profile der beiden tiefsten Stoßröhren-Kerne (Station 23, 26; s. Tab. I) stimmen in ihrer Mikrofauna mit der des oberen Teils des Lotkerns (s. Tab. 4) überein. d) Die unter b und C angefuührten Faunenwechsel werden auf langperiodische Klimaerwärmungen im skandinavischen Raum und den damit verbundenen Anstieg des Meeresspiegels zurückgeführt. e) Der Lotkern kann mit Hilfe von Untersuchungsergebnissen aus seiner näheren Umgebung (Bohuslän, Oslofjord) nur bedingt in ein stratigraphisches, durch Megafossilien belegtes Schema eingefügt werden, da er nach unten durch die Mikrofauna keine echte Begrenzung aufweist. Durch die Einwanderung mehrerer Foraminiferenarten mit boreal-lusitanischer Verbreitung in die Untersuchungsgebiete wird der Lotkern in die Isocardia-Absätze (Atlanticum-oberes Subboreal) eingegliedert. f) Aus einer Tabelle von PRATJE(1940) kann entnommen werden, daß dieser Zeitabschnitt nach DE GEER etwa um 5000 v.Chr. beginnt. Danach beträgt die geringste Sedimentation, die in dem Kerngebiet nach dieser Zeitrechnung möglich ist, bei einer Eindringtiefe des Lots von 10 m ungefähr 1,40 m pro Jahrtausend. Wahrscheinlich wird dieses Maß etwas größer sein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of living (Rose Bengal-stained), dead and fossil benthic foraminifera was investigated in six short cores (multicores, 30-32 cm total length) recovered from the central Red Sea. The ecological preferences as well as the relationship between the live and dead/fossil assemblages (preserved down-core) were examined. The sites, located along a W-E profile and between the depth of 366 and 1782 m, extend from the center of the oxygen minimum zone (OMZ, ~200-650 m), through its margin at ~600 m, and down to the well-aerated deep-water environment. Live (Rose-Bengal stained) and coexisting dead foraminifera were studied in the upper 5 cm of each of the sites, and the fossil record was studied down to ~32 cm. Q-mode Principal Component Analysis was used and four distinct foraminiferal fossil assemblages were determined. These assemblages follow different water mass properties. In the center of the OMZ, where the organic carbon content is highest and the oxygen concentration is lowest (<=0.5 ml O2/l), the Bolivina persiensis-Bulimina marginata-Discorbinella rhodiensis assemblage dominates. The slightly more aerated and lower organic-carbon-content seafloor, at the margin of the OMZ, is characterized by the Neouvigerina porrecta-Gyroidinoides cf. G. soldanii assemblage. The transitional environment, between 900-1200 m, with its well-aerated and oligotrophic seafloor, is dominated by the Neouvigerina ampullacea-Cibicides mabahethi assemblage. The deeper water (>1500 m), characterized by the most oxygenated and oligotrophic seafloor conditions, is associated with the Astrononion sp. A-Hanzawaia sp. A assemblage. Throughout the Red Sea extremely high values of temperature and salinity are constant below ~200 m depth, but the flux of organic matter to the sea floor varies considerably with bathymetry and appears to be the main controlling factor governing the distribution pattern of the benthic foraminifera. Comparison between live and the dead/fossil assemblages reveals a large difference between the two. Processes that may control this difference include species-specific high turnover rates, and preferential predation and loss of fragile taxa (either by chemical or microbial processes). Significant variations in the degree of loss of the organic-cemented agglutinants were observed down core. This group is preserved down to 5-10 cm at the shallow OMZ sites and down to greater depths at well-aerated and oligotrophic sites. The lower rate of disintegration of these forms, in the deeper locations of the Red Sea, may be related to low microbial activity. This results in the preservation of increasing numbers of organic-cemented shells down-core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxygen minimum zone (OMZ) of the late Quaternary California margin experienced abrupt and dramatic changes in strength and depth in response to changes in intermediate water ventilation, ocean productivity, and climate at orbital through millennial time scales. Expansion and contraction of the OMZ is exhibited at high temporal resolution (107-126 year) by quantitative benthic foraminiferal assemblage changes in two piston cores forming a vertical profile in Santa Barbara Basin (569 m, basin floor; 481 m, near sill depth) to 34 and 24 ka, respectively. Variation in the OMZ is quantified by new benthic foraminiferal groupings and new dissolved oxygen index based on documented relations between species and water-mass oxygen concentrations. Foraminiferal-based paleoenvironmental assessments are integrated with principal component analysis, bioturbation, grain size, CaCO3, total organic carbon, and d13C to reconstruct basin oxygenation history. Fauna responded similarly between the two sites, although with somewhat different magnitude and taxonomic expression. During cool episodes (Younger Dryas and stadials), the water column was well oxygenated, most strongly near the end of the glacial episode (17-16 ka; Heinrich 1). In contrast, the OMZ was strong during warm episodes (Bølling/Allerød, interstadials, and Pre-Boreal). During the Bølling/Allerød, the OMZ shoaled to <360 m of contemporaneous sea level, its greatest vertical expansion of the last glacial cycle. Assemblages were then dominated by Bolivina tumida, reflecting high concentrations of dissolved methane in bottom waters. Short decadal intervals were so severely oxygen-depleted that no benthic foraminifera were present. The middle to late Holocene (6-0 ka) was less dysoxic than the early Holocene.