843 resultados para Artificial intelligence algorithms
Resumo:
Design of liquid retaining structures involves many decisions to be made by the designer based on rules of thumb, heuristics, judgment, code of practice and previous experience. Various design parameters to be chosen include configuration, material, loading, etc. A novice engineer may face many difficulties in the design process. Recent developments in artificial intelligence and emerging field of knowledge-based system (KBS) have made widespread applications in different fields. However, no attempt has been made to apply this intelligent system to the design of liquid retaining structures. The objective of this study is, thus, to develop a KBS that has the ability to assist engineers in the preliminary design of liquid retaining structures. Moreover, it can provide expert advice to the user in selection of design criteria, design parameters and optimum configuration based on minimum cost. The development of a prototype KBS for the design of liquid retaining structures (LIQUID), using blackboard architecture with hybrid knowledge representation techniques including production rule system and object-oriented approach, is presented in this paper. An expert system shell, Visual Rule Studio, is employed to facilitate the development of this prototype system. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper we describe a distributed object oriented logic programming language in which an object is a collection of threads deductively accessing and updating a shared logic program. The key features of the language, such as static and dynamic object methods and multiple inheritance, are illustrated through a series of small examples. We show how we can implement object servers, allowing remote spawning of objects, which we can use as staging posts for mobile agents. We give as an example an information gathering mobile agent that can be queried about the information it has so far gathered whilst it is gathering new information. Finally we define a class of co-operative reasoning agents that can do resource bounded inference for full first order predicate logic, handling multiple queries and information updates concurrently. We believe that the combination of the concurrent OO and the LP programming paradigms produces a powerful tool for quickly implementing rational multi-agent applications on the internet.
Resumo:
Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.
Resumo:
A central problem in visual perception concerns how humans perceive stable and uniform object colors despite variable lighting conditions (i.e. color constancy). One solution is to 'discount' variations in lighting across object surfaces by encoding color contrasts, and utilize this information to 'fill in' properties of the entire object surface. Implicit in this solution is the caveat that the color contrasts defining object boundaries must be distinguished from the spurious color fringes that occur naturally along luminance-defined edges in the retinal image (i.e. optical chromatic aberration). In the present paper, we propose that the neural machinery underlying color constancy is complemented by an 'error-correction' procedure which compensates for chromatic aberration, and suggest that error-correction may be linked functionally to the experimentally induced illusory colored aftereffects known as McCollough effects (MEs). To test these proposals, we develop a neural network model which incorporates many of the receptive-field (RF) profiles of neurons in primate color vision. The model is composed of two parallel processing streams which encode complementary sets of stimulus features: one stream encodes color contrasts to facilitate filling-in and color constancy; the other stream selectively encodes (spurious) color fringes at luminance boundaries, and learns to inhibit the filling-in of these colors within the first stream. Computer simulations of the model illustrate how complementary color-spatial interactions between error-correction and filling-in operations (a) facilitate color constancy, (b) reveal functional links between color constancy and the ME, and (c) reconcile previously reported anomalies in the local (edge) and global (spreading) properties of the ME. We discuss the broader implications of these findings by considering the complementary functional roles performed by RFs mediating color-spatial interactions in the primate visual system. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The long short-term memory (LSTM) is not the only neural network which learns a context sensitive language. Second-order sequential cascaded networks (SCNs) are able to induce means from a finite fragment of a context-sensitive language for processing strings outside the training set. The dynamical behavior of the SCN is qualitatively distinct from that observed in LSTM networks. Differences in performance and dynamics are discussed.
Resumo:
Recent work by Siegelmann has shown that the computational power of recurrent neural networks matches that of Turing Machines. One important implication is that complex language classes (infinite languages with embedded clauses) can be represented in neural networks. Proofs are based on a fractal encoding of states to simulate the memory and operations of stacks. In the present work, it is shown that similar stack-like dynamics can be learned in recurrent neural networks from simple sequence prediction tasks. Two main types of network solutions are found and described qualitatively as dynamical systems: damped oscillation and entangled spiraling around fixed points. The potential and limitations of each solution type are established in terms of generalization on two different context-free languages. Both solution types constitute novel stack implementations - generally in line with Siegelmann's theoretical work - which supply insights into how embedded structures of languages can be handled in analog hardware.
Resumo:
This paper discusses a document discovery tool based on Conceptual Clustering by Formal Concept Analysis. The program allows users to navigate e-mail using a visual lattice metaphor rather than a tree. It implements a virtual. le structure over e-mail where files and entire directories can appear in multiple positions. The content and shape of the lattice formed by the conceptual ontology can assist in e-mail discovery. The system described provides more flexibility in retrieving stored e-mails than what is normally available in e-mail clients. The paper discusses how conceptual ontologies can leverage traditional document retrieval systems and aid knowledge discovery in document collections.
Resumo:
In this paper we present a technique for visualising hierarchical and symmetric, multimodal fitness functions that have been investigated in the evolutionary computation literature. The focus of this technique is on landscapes in moderate-dimensional, binary spaces (i.e., fitness functions defined over {0, 1}(n), for n less than or equal to 16). The visualisation approach involves an unfolding of the hyperspace into a two-dimensional graph, whose layout represents the topology of the space using a recursive relationship, and whose shading defines the shape of the cost surface defined on the space. Using this technique we present case-study explorations of three fitness functions: royal road, hierarchical-if-and-only-if (H-IFF), and hierarchically decomposable functions (HDF). The visualisation approach provides an insight into the properties of these functions, particularly with respect to the size and shape of the basins of attraction around each of the local optima.
Resumo:
Mapas Conceituais são representações gráficas do conhecimento de uma pessoa num dado momento e área de conhecimento. Por sua natureza investigativa, são utilizados como ferramentas de apoio em abordagens pedagógicas que objetivam promover a aprendizagem significativa. No entanto, o processo de avaliação de um mapa tende a ser custoso pois acarreta uma pesada carga de processamento cognitivo por parte do avaliador, já que este precisa mapear os conceitos e relações em busca de nuances de conhecimento alí presentes. Essa pesquisa tem por objetivo aumentar o nível de abstração nas interações entre o avaliador e os mapas conceituais fornecendo uma camada intermediária de inteligência computacional que favoreça a comunicação por meio de perguntas e respostas em linguagem natural, fornecendo ao avaliador ferramentas que lhe permita examinar o conteúdo do mapa conceitual sem exigir deste o mapeamento visual dos conceitos e relações presentes nos mapas avaliados. Uma ferramenta é prototipada e uma prova de conceito apresentada. A análise da arquitetura proposta permitiu definir uma arquitetura final com características que permitem potencializar o uso de mapas conceituais e facilitar diversas operações pedagógicas com estes. Essa pesquisa situa-se na área de investigação de sistemas de perguntas e resposta, aplicando técnicas de processamento de linguagem natural para análise da pergunta e interpretação do mapa conceitual e aplica técnica de inteligência artificial para inferir respostas às perguntas.
Resumo:
The relation between patient and physician in most modern Health Care Sys- tems is sparse, limited in time and very in exible. On the other hand, and in contradiction with several recent studies, most physicians do not rely their patient diagnostics evaluations on intertwined psychological and social nature factors. Facing these problems and trying to improve the patient/physician relation we present a mobile health care solution to im- prove the interaction between the physician and his patients. The solution serves not only as a privileged mean of communication between physicians and patients but also as an evolutionary intelligent platform delivering a mobile rule based system.
Resumo:
What sort of component coordination strategies emerge in a software integration process? How can such strategies be discovered and further analysed? How close are they to the coordination component of the envisaged architectural model which was supposed to guide the integration process? This paper introduces a framework in which such questions can be discussed and illustrates its use by describing part of a real case-study. The approach is based on a methodology which enables semi-automatic discovery of coordination patterns from source code, combining generalized slicing techniques and graph manipulation
Resumo:
Pretendemos mostrar como os sistemas de motion capture permitem transpor para avatares movimentos de pessoas reais para, com o auxílio do processamento gráfico e dos incrementos em Inteligência artificial, criar as planícies de Masahiro Mori, o uncanny valley. Acreditamos que, num futuro próximo, será possível emocionar jogadores se o realismo das interacções no jogo apresentar consistência semelhante às experiências no mundo real.
Resumo:
We provide all agent; the capability to infer the relations (assertions) entailed by the rules that, describe the formal semantics of art RDFS knowledge-base. The proposed inferencing process formulates each semantic restriction as a rule implemented within a, SPARQL query statement. The process expands the original RDF graph into a fuller graph that. explicitly captures the rule's described semantics. The approach is currently being explored in order to support descriptions that follow the generic Semantic Web Rule Language. An experiment, using the Fire-Brigade domain, a small-scale knowledge-base, is adopted to illustrate the agent modeling method and the inferencing process.
Resumo:
Nos tempos actuais os equipamentos para Aquecimento Ventilação e Ar Condicionado (AVAC) ocupam um lugar de grande importância na concepção, desenvolvimento e manutenção de qualquer edifício por mais pequeno que este seja. Assim, surge a necessidade premente de racionalizar os consumos energéticos optimizando-os. A alta fiabilidade desejada nestes sistemas obriga-nos cada vez mais a descobrir formas de tornar a sua manutenção mais eficiente, pelo que é necessário prevenir de uma forma proactiva todas as falhas que possam prejudicar o bom desempenho destas instalações. Como tal, torna-se necessário detectar estas falhas/anomalias, sendo imprescíndivel que nos antecipemos a estes eventos prevendo o seu acontecimento num horizonte temporal pré-definido, permitindo actuar o mais cedo possível. É neste domínio que a presente dissertação tenta encontrar soluções para que a manutenção destes equipamentos aconteça de uma forma proactiva e o mais eficazmente possível. A ideia estruturante é a de tentar intervir ainda numa fase incipiente do problema, alterando o comportamento dos equipamentos monitorizados, de uma forma automática, com recursos a agentes inteligentes de diagnóstico de falhas. No caso em estudo tenta-se adaptar de forma automática o funcionamento de uma Unidade de Tratamento de Ar (UTA) aos desvios/anomalias detectadas, promovendo a paragem integral do sistema apenas como último recurso. A arquitectura aplicada baseia-se na utilização de técnicas de inteligência artificial, nomeadamente dos sistemas multiagente. O algoritmo utilizado e testado foi construído em Labview®, utilizando um kit de ferramentas de controlo inteligente para Labview®. O sistema proposto é validado através de um simulador com o qual se conseguem reproduzir as condições reais de funcionamento de uma UTA.
Resumo:
Nowadays, the cooperative intelligent transport systems are part of a largest system. Transportations are modal operations integrated in logistics and, logistics is the main process of the supply chain management. The supply chain strategic management as a simultaneous local and global value chain is a collaborative/cooperative organization of stakeholders, many times in co-opetition, to perform a service to the customers respecting the time, place, price and quality levels. The transportation, like other logistics operations must add value, which is achieved in this case through compression lead times and order fulfillments. The complex supplier's network and the distribution channels must be efficient and the integral visibility (monitoring and tracing) of supply chain is a significant source of competitive advantage. Nowadays, the competition is not discussed between companies but among supply chains. This paper aims to evidence the current and emerging manufacturing and logistics system challenges as a new field of opportunities for the automation and control systems research community. Furthermore, the paper forecasts the use of radio frequency identification (RFID) technologies integrated into an information and communication technologies (ICT) framework based on distributed artificial intelligence (DAI) supported by a multi-agent system (MAS), as the most value advantage of supply chain management (SCM) in a cooperative intelligent logistics systems. Logistical platforms (production or distribution) as nodes of added value of supplying and distribution networks are proposed as critical points of the visibility of the inventory, where these technological needs are more evident.