953 resultados para Artificial Intelligence, Constraint Programming, set variables, representation
Resumo:
Received signal strength-based localization systems usually rely on a calibration process that aims at characterizing the propagation channel. However, due to the changing environmental dynamics, the behavior of the channel may change after some time, thus, recalibration processes are necessary to maintain the positioning accuracy. This paper proposes a dynamic calibration method to initially calibrate and subsequently update the parameters of the propagation channel model using a Least Mean Squares approach. The method assumes that each anchor node in the localization infrastructure is characterized by its own propagation channel model. In practice, a set of sniffers is used to collect RSS samples, which will be used to automatically calibrate each channel model by iteratively minimizing the positioning error. The proposed method is validated through numerical simulation, showing that the positioning error of the mobile nodes is effectively reduced. Furthermore, the method has a very low computational cost; therefore it can be used in real-time operation for wireless resource-constrained nodes.
Resumo:
In the beginning of the 90s, ontology development was similar to an art: ontology developers did not have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on principles, methods and methodologies, together with supporting technologies and languages, made ontology development become an engineering discipline, the so-called Ontology Engineering. Ontology Engineering refers to the set of activities that concern the ontology development process and the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them. Thanks to the work done in the Ontology Engineering field, the development of ontologies within and between teams has increased and improved, as well as the possibility of reusing ontologies in other developments and in final applications. Currently, ontologies are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications related to knowledge management, natural language processing, e-commerce, intelligent information integration, information retrieval, database design and integration, bio-informatics, education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, we provide an overview of Ontology Engineering, mentioning the most outstanding and used methodologies, languages, and tools for building ontologies. In addition, we include some words on how all these elements can be used in the Linked Data initiative.
Resumo:
DynaLearn (http://www.DynaLearn.eu) develops a cognitive artefact that engages learners in an active learning by modelling process to develop conceptual system knowledge. Learners create external representations using diagrams. The diagrams capture conceptual knowledge using the Garp3 Qualitative Reasoning (QR) formalism [2]. The expressions can be simulated, confronting learners with the logical consequences thereof. To further aid learners, DynaLearn employs a sequence of knowledge representations (Learning Spaces, LS), with increasing complexity in terms of the modelling ingredients a learner can use [1]. An online repository contains QR models created by experts/teachers and learners. The server runs semantic services [4] to generate feedback at the request of learners via the workbench. The feedback is communicated to the learner via a set of virtual characters, each having its own competence [3]. A specific feedback thus incorporates three aspects: content, character appearance, and a didactic setting (e.g. Quiz mode). In the interactive event we will demonstrate the latest achievements of the DynaLearn project. First, the 6 learning spaces for learners to work with. Second, the generation of feedback relevant to the individual needs of a learner using Semantic Web technology. Third, the verbalization of the feedback via different animated virtual characters, notably: Basic help, Critic, Recommender, Quizmaster & Teachable agen
Resumo:
We present an evaluation of a spoken language dialogue system with a module for the management of userrelated information, stored as user preferences and privileges. The flexibility of our dialogue management approach, based on Bayesian Networks (BN), together with a contextual information module, which performs different strategies for handling such information, allows us to include user information as a new level into the Context Manager hierarchy. We propose a set of objective and subjective metrics to measure the relevance of the different contextual information sources. The analysis of our evaluation scenarios shows that the relevance of the short-term information (i.e. the system status) remains pretty stable throughout the dialogue, whereas the dialogue history and the user profile (i.e. the middle-term and the long-term information, respectively) play a complementary role, evolving their usefulness as the dialogue evolves.
Resumo:
The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.
Resumo:
Diabetes is the most common disease nowadays in all populations and in all age groups. Different techniques of artificial intelligence has been applied to diabetes problem. This research proposed the artificial metaplasticity on multilayer perceptron (AMMLP) as prediction model for prediction of diabetes. The Pima Indians diabetes was used to test the proposed model AMMLP. The results obtained by AMMLP were compared with other algorithms, recently proposed by other researchers, that were applied to the same database. The best result obtained so far with the AMMLP algorithm is 89.93%
Resumo:
sharedcircuitmodels is presented in this work. The sharedcircuitsmodelapproach of sociocognitivecapacities recently proposed by Hurley in The sharedcircuitsmodel (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences 31(1) (2008) 1–22 is enriched and improved in this work. A five-layer computational architecture for designing artificialcognitivecontrolsystems is proposed on the basis of a modified sharedcircuitsmodel for emulating sociocognitive experiences such as imitation, deliberation, and mindreading. In order to show the enormous potential of this approach, a simplified implementation is applied to a case study. An artificialcognitivecontrolsystem is applied for controlling force in a manufacturing process that demonstrates the suitability of the suggested approach
Resumo:
In the presence of a river flood, operators in charge of control must take decisions based on imperfect and incomplete sources of information (e.g., data provided by a limited number sensors) and partial knowledge about the structure and behavior of the river basin. This is a case of reasoning about a complex dynamic system with uncertainty and real-time constraints where bayesian networks can be used to provide an effective support. In this paper we describe a solution with spatio-temporal bayesian networks to be used in a context of emergencies produced by river floods. In the paper we describe first a set of types of causal relations for hydrologic processes with spatial and temporal references to represent the dynamics of the river basin. Then we describe how this was included in a computer system called SAIDA to provide assistance to operators in charge of control in a river basin. Finally the paper shows experimental results about the performance of the model.
Resumo:
Expert systems for decision support have recently been successfully introduced in road transport management. In this paper, we apply three state-of-the art ILP systems to learn how to detect traffic problems.
Resumo:
Proof-Carrying Code (PCC) is a general approach to mobile code safety in which programs are augmented with a certifícate (or proof). The practical uptake of PCC greatly depends on the existence of a variety of enabling technologies which allow both to prove programs correct and to replace a costly verification process by an efñcient checking procedure on the consumer side. In this work we propose Abstraction-Carrying Code (ACC), a novel approach which uses abstract interpretation as enabling technology. We argüe that the large body of applications of abstract interpretation to program verification is amenable to the overall PCC scheme. In particular, we rely on an expressive class of safety policies which can be defined over different abstract domains. We use an abstraction (or abstract model) of the program computed by standard static analyzers as a certifícate. The validity of the abstraction on the consumer side is checked in a single-pass by a very efficient and specialized abstract-interpreter. We believe that ACC brings the expressiveness, flexibility and automation which is inherent in abstract interpretation techniques to the área of mobile code safety. We have implemented and benchmarked ACC within the Ciao system preprocessor. The experimental results show that the checking phase is indeed faster than the proof generation phase, and that the sizes of certificates are reasonable.
Resumo:
While negation has been a very active área of research in logic programming, comparatively few papers have been devoted to implementation issues. Furthermore, the negation-related capabilities of current Prolog systems are limited. We recently presented a novel method for incorporating negation in a Prolog compiler which takes a number of existing methods (some modified and improved by us) and uses them in a combined fashion. The method makes use of information provided by a global analysis of the source code. Our previous work focused on the systematic description of the techniques and the reasoning about correctness and completeness of the method, but provided no experimental evidence to evalúate the proposal. In this paper, we report on an implementation, using the Ciao Prolog system preprocessor, and provide experimental data which indicates that the method is not only feasible but also quite promising from the efficiency point of view. In addition, the tests have provided new insight as to how to improve the proposal further. Abstract interpretation techniques are shown to offer important improvements in this application.
Resumo:
We informally discuss several issues related to the parallel execution of logic programming systems and concurrent logic programming systems, and their generalization to constraint programming. We propose a new view of these systems, based on a particular definition of parallelism. We argüe that, under this view, a large number of the actual systems and models can be explained through the application, at different levéis of granularity, of only a few basic principies: determinism, non-failure, independence (also referred to as stability), granularity, etc. Also, and based on the convergence of concepts that this view brings, we sketch a model for the implementation of several parallel constraint logic programming source languages and models based on a common, generic abstract machine and an intermedíate kernel language.
Resumo:
The control part of the execution of a constraint logic program can be conceptually shown as a search-tree, where nodes correspond to calis, and whose branches represent conjunctions and disjunctions. This tree represents the search space traversed by the program, and has also a direct relationship with the amount of work performed by the program. The nodes of the tree can be used to display information regarding the state and origin of instantiation of the variables involved in each cali. This depiction can also be used for the enumeration process. These are the features implemented in APT, a tool which runs constraint logic programs while depicting a (modified) search-tree, keeping at the same time information about the state of the variables at every moment in the execution. This information can be used to replay the execution at will, both forwards and backwards in time. These views can be abstracted when the size of the execution requires it. The search-tree view is used as a framework onto which constraint-level visualizations (such as those presented in the following chapter) can be attached.
Resumo:
We present a generic preprocessor for combined static/dynamic validation and debugging of constraint logic programs. Passing programs through the preprocessor prior to execution allows detecting many bugs automatically. This is achieved by performing a repertoire of tests which range from simple syntactic checks to much more advanced checks based on static analysis of the program. Together with the program, the user may provide a series of assertions which trigger further automatic checking of the program. Such assertions are written using the assertion language presented in Chapter 2, which allows expressing a wide variety of properties. These properties extend beyond the predefined set which may be understandable by the available static analyzers and include properties defined by means of user programs. In addition to user-provided assertions, in each particular CLP system assertions may be available for predefined system predicates. Checking of both user-provided assertions and assertions for system predicates is attempted first at compile-time by comparing them with the results of static analysis. This may allow statically proving that the assertions hold (Le., they are validated) or that they are violated (and thus bugs detected). User-provided assertions (or parts of assertions) which cannot be statically proved ñor disproved are optionally translated into run-time tests. The implementation of the preprocessor is generic in that it can be easily customized to different CLP systems and dialects and in that it is designed to allow the integration of additional analyses in a simple way. We also report on two tools which are instances of the generic preprocessor: CiaoPP (for the Ciao Prolog system) and CHIPRE (for the CHIP CLP(FL>) system). The currently existing analyses include types, modes, non-failure, determinacy, and computational cost, and can treat modules separately, performing incremental analysis.
Resumo:
In an advanced program development environment, such as that discussed in the introduction of this book, several tools may coexist which handle both the program and information on the program in different ways. Also, these tools may interact among themselves and with the user. Thus, the different tools and the user need some way to communicate. It is our design principie that such communication be performed in terms of assertions. Assertions are syntactic objects which allow expressing properties of programs. Several assertion languages have been used in the past in different contexts, mainly related to program debugging. In this chapter we propose a general language of assertions which is used in different tools for validation and debugging of constraint logic programs in the context of the DiSCiPl project. The assertion language proposed is parametric w.r.t. the particular constraint domain and properties of interest being used in each different tool. The language proposed is quite general in that it poses few restrictions on the kind of properties which may be expressed. We believe the assertion language we propose is of practical relevance and appropriate for the different uses required in the tools considered.