989 resultados para Anti-blasphemy laws
Resumo:
Karlodinium veneficum (syn. Karlodinium micrum, Bergholtz et al. 2006; J Phycol 42:170–193) is a small athecate dinoflagellate commonly present in low levels in temperate, coastal waters. Occasionally, K. veneficum forms ichthyotoxic blooms due to the presence of cytotoxic, hemolytic compounds, putatively named karlotoxins. To evaluate the anti-grazing properties of these karlotoxins, we conducted food removal experiments using the cosmopolitan copepod grazer Acartia tonsa. Wild-caught, adult female A. tonsa were exposed to 6 monoalgal or mixed algal diets made using bloom concentrations of toxic (CCMP 2064) and non-toxic (CSIC1) strains of K. veneficum. Ingestion and clearance rates were calculated using the equations of Frost (1972). Exposure to the toxic strain of K. veneficum did not contribute to an increased mortality of the copepods and no significant differences in copepod mortality were found among the experimental diets. However, A. tonsa had significantly greater clearance and ingestion rates when exposed to a monoalgal diet of the non-toxic strain CSIC1 than when exposed to the monoalgal diet of toxic strain CCMP 2064 and mixed diets dominated by this toxic strain. These results support the hypothesis that karlotoxins in certain strains of K. veneficum deter grazing by potential predators and contribute to the formation and continuation of blooms.
Resumo:
An articulated lorry was instrumented in order to measure its performance in straight-line braking. The trailer was fitted with two interchangeable tandem axle sub-chassis, one with an air suspension and the other with a steel monoleaf four-spring suspension. The brakes were only applied to the trailer axles, which were fitted with anti-lock braking systems (ABS), with the brake torque controlled in response to anticipated locking of the leading axle of the tandem. The vehicle with the air suspension was observed to have significantly better braking performance than the steel suspension, and to generate smaller inter-axle load transfer and smaller vertical dynamic tyre forces. Computer models of the two suspensions were developed, including their brakes and anti-lock systems. The models were found to reproduce most of the important features of the experimental results. It was concluded that the poor braking performance of the steel four-spring suspension was mainly due to interaction between the ABS and inter-axle load transfer effects. The effect of road roughness was investigated and it was found that vehicle stopping distances can increase significantly with increasing road roughness. Two alternative anti-lock braking control strategies were simulated. It was found that independent sensing and actuation of the ABS system on each wheel greatly reduced the difference in stopping distances between the air and steel suspensions. A control strategy based on limiting wheel slip was least susceptible to the effects of road roughness.
Resumo:
The use of anti-roll bars to provide additional roll stiffness and therefore to reduce the trade-off between ride and rollover performance has previously been studied. However, little work has been carried out to investigate the benefits of a switchable roll stiffness. Such a semi-active anti-roll system has the ability to have a low roll stiffness during straight-ahead driving for improved ride performance and high roll stiffness during cornering for improved roll performance. Modelling of such a system is conducted and the model is validated against a semi-active anti-roll system fitted to an experimental vehicle. Experimental and theoretical investigations are used to investigate the performance of such a system with several different strategies employed to switch to the high-stiffness state. The use of an air suspension on the vehicle to roll into corners is also investigated, as is the possibility of exploiting the road layout by allowing the vehicle to be in a low-roll-stiffness configuration during a corner, and then to switch to the high-roll-stiffness configuration midcorner, hence 'locking in' a roll angle. The best rollover performance improvement that was achieved was 12.5 per cent. © IMechE 2008.
Resumo:
A novel L-amino acid oxidase, named TSV-LAO, has been purified and cloned from the snake Trimeresurus stejnegeri. Fifty percentage cytotoxic concentrations (CC50) of TSV-LAO on C8166 cells were 24 and 390 nM in the absence or presence of catalase (400nM), respectively. However, at concentrations that showed little effect on cell viability, TSV-LAO displayed dose dependent inhibition on HIV-1 infection and replication. The antiviral selectivity indexes (CC50/EC50) were 16 and 6, respectively, corresponding to the measurements of syncytium formation and HIV-1 p24 antigen expression. Interestingly, the presence of catalase resulted in an increase of its antiviral selectivity to 52 and 38. Under the same conditions, no anti-HIV-1 activity was observed by exogenous addition of H2O2. The complete amino acid sequence of TSV-LAO, as deduced from its cDNA, exhibits a high degree of sequence identity with other snake venom LAOs. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
A novel protein, named BAS-AH, was purified and characterized from the skin of the toad Bufo andrewsi. BAS-AH is a single chain protein and the apparent molecular weight is about 63 kDa as judged by SDS-PAGE. BAS-AH was determined to bind heme (0.89 mol heme/mol protein) as determined by pyridine haemochrome analysis. Fifty percentage cytotoxic concentration (CC50) of BAS-AH on C8166 cells was 9.5 mu M. However, at concentrations that showed little effect oil cell viability, BAS-AH displayed dose dependent inhibition oil HIV-1 infection and replication. The antiviral selectivity indexes corresponding to the measurements of syncytium formation and HIV-1 p24 (CC50/EC50) were 14.4 and 11.4, respectively, corresponding to the . BAS-AH also showed an inhibitory effect on the activity of recombinant HIV-1 reverse transcriptase (IC50 = 1.32 mu M). The N-terminal sequence of BAS-AH was determined to be NAKXKADVIGKISILLGQDNLSNIVAM, which exhibited little identity with other known anti-HIV-1 proteins. BAS-AH is devoid of antibacterial, protcolytic, trypsin inhibitory activity, (L)-amino acid oxidase activity and catalase activity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Peptidomics and genomics analyses were used to study an anti-infection array of peptides of amphibian skin. 372 cDNA sequences of antimicrobial peptides were characterized from a single individual skin of the frog Odorrana grahami that encode 107 novel an
Resumo:
Surface vortex behavior in front of the tunnel intake was investigated in this paper. The critical submergence of vortex was discussed based on the concept of 'critical spherical sink surface' (CSSS). The vortex formation and evolution at the tunnel intake were analyzed based on the theory of CSSS considering the effect of circulation. A theory was proposed to explain the surface vortex. The theoretical development was verified by the physical model experiments of Xiluodu hydropower station. The radial velocity and vortex circulation were considered as the main factors that influence the formation and evolution of surface vortex. Finally, an anti-vortex intake configuration was proposed to weaken the air-core vortex in front of the tunnel intakes of the hydraulic structures. © 2011 Science China Press and Springer-Verlag Berlin Heidelberg.