991 resultados para Anti-Mullerian hormone
Resumo:
The chemical composition of Azolla africana and Spirodela polyrrhiza cultivated in earthen ponds were determined. Crude protein contents of the samples were 28.9~c0.6 and 25.6~c0.2% dry matter for A. africana and S. polyrrhiza respectively. Dry matter, crude fibre and lipid contents of A. africana were higher (P<0.05) than values obtained for S. polyrrhiza. Mineral analyses showed that S. polyrrhiza contained higher levels of Na, S, Ca, Mg and Fe than A. africana. Except for Ca content in S. polyrrhiza, heavy metals (Ni and Zn) accumulation in Azolla were very high. There were no wide differences in the individual amino acid indexes except for methionine. Some anti-nutritional factors were determined. Cyanide, tannin and phytin contents of fresh weed samples were higher than sun-dried samples. A. africana contained more cyanide and tannin than S. polyrrhiza both in fresh and sun-dried forms
Resumo:
The coherent anti-Stokes Raman scattering (CARS) microscope with the combination of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labelling. CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscope. In this paper, the intensity distribution and the polarization property of the optical field near the focus was calculated. By using the Green function, the precise analytic solution to the wave equation of a Hertzian dipole source was obtained. We found that the intensity distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscope (e.g. the point spread function) will fail to describe the imaging properties of the CARS microscope.
The intensity distributions of collected signals in coherent anti-Stokes Raman scattering microscopy
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy with the combining of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labeling. The CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscopy. In this paper, we calculated the propagation of CARS signals by using the wave equation in medium and the slowly varying envelope approximation (SVEA), and find that the intensity angular distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscopy (e.g.. the point spread function) will fail to descript the imaging properties of CARS microscopy. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
89 ripe female brooders of the catfish, Clarias anguillaris (Body wt. Range 150g-1, 200g) were induced to spawn by hormone (Ovaprim) induced natural spawning technique over a period of 10 weeks. Matching ripe males were used for pairing the females at the ratio of two males to a female. Six ranges of brood stock body weights were considered as follows; <200g; 200g-399g; 400g-599g; 600-799g; 800g-999g; > 1000g and the number of fry produced by each female brooder was scored/recorded against the corresponding body weight range. The number of fry per unit quantity of hormone and the cost of production a fry based on the current price of Ovaprim (hormon) were determined so as to ascertain most economic size range. The best and most economic size range was between 400g-599g body weight with about 20,000 fry per ml of hormone and N0.028 per fry, while the females above 1000g gave the poorest results of 9,519 fry per ml of hormone and N0.059 per fry. For optimum production of Clarias anguillaris fry and maximum return on investment female brooders of body weights ranging between 400g-599g are recommended for hormone induced natural breeding exercises
Resumo:
89 ripe female brooders of the catfish, Clarias anguillaris (Body wt. Range 150g-1, 200g) were induced to spawn by hormone (Ovaprim) induced natural spawning technique over a period of 10 weeks. Matching ripe males were used for pairing the females at the ratio of two males to a female. Six ranges of brood stock body weights were considered as follows; <200g; 200g-399g; 400g-599g; 600-799g; 800g-999g; > 1000g and the number of fry produced by each female brooder was scored/recorded against the corresponding body weight range. The number of fry per unit quantity of hormone and the cost of production a fry based on the current price of Ovaprim (hormon) were determined so as to ascertain most economic size range. The best and most economic size range was between 400g-599g body weight with about 20,000 fry per ml of hormone and N0.028 per fry, while the females above 1000g gave the poorest results of 9,519 fry per ml of hormone and N0.059 per fry. For optimum production of Clarias anguillaris fry and maximum return on investment female brooders of body weights ranging between 400g-599g are recommended for hormone induced natural breeding exercises
Resumo:
Mannose receptor (MR) is widely expressed on macrophages, immature dendritic cells, and a variety of epithelial and endothelial cells. It is a 180 kD type I transmembrane receptor whose extracellular region consists of three parts: the amino-terminal cysteine-rich domain (Cys-MR); a fibronectin type II-like domain; and a series of eight tandem C-type lectin carbohydrate recognition domains (CRDs). Two portions of MR have distinct carbohydrate recognition properties: Cys-MR recognizes sulfated carbohydrates and the tandem CRD region binds terminal mannose, fucose, and N-acetyl-glucosamine (GlcNAc). The dual carbohydrate binding specificity allows MR to interact with sulfated and nonsulfated polysaccharide chains, and thereby facilitating the involvement of MR in immunological and physiological processes. The immunological functions of MR include antigen capturing (through binding non-sulfated carbohydrates) and antigen targeting (through binding sulfated carbohydrates), and the physiological roles include rapid clearance of circulatory luteinizing hormone (LH), which bears polysaccharide chains terminating with sulfated and non-sulfated carbohydrates.
We have crystallized and determined the X-ray structures of unliganded Cys-MR (2.0 Å) and Cys-MR complexed with different ligands, including Hepes (1.7 Å), 4SO_4-N-Acetylgalactosamine (4SO_4-GalNAc; 2.2 Å), 3SO_4-Lewis^x (2.2 Å), 3S04-Lewis^a (1.9 Å), and 6SO_4-GalNAc (2.5 Å). The overall structure of Cys-MR consists of 12 anti-parallel β-strands arranged in three lobes with approximate three fold internal symmetry. The structure contains three disulfide bonds, formed by the six cysteines in the Cys-MR sequence. The ligand-binding site is located in a neutral pocket within the third lobe, in which the sulfate group of ligand is buried. Our results show that optimal binding is achieved by a carbohydrate ligand with a sulfate group that anchors the ligand by forming numerous hydrogen bonds and a sugar ring that makes ring-stacking interactions with Trpll7 of CysMR. Using a fluorescence-based assay, we characterized the binding affinities between CysMR and its ligands, and rationalized the derived affinities based upon the crystal structures. These studies reveal the mechanism of sulfated carbohydrate recognition by Cys-MR and facilitate our understanding of the role of Cys-MR in MR recognition of its ligands.
Resumo:
This thesis reports on a method to improve in vitro diagnostic assays that detect immune response, with specific application to HIV-1. The inherent polyclonal diversity of the humoral immune response was addressed by using sequential in situ click chemistry to develop a cocktail of peptide-based capture agents, the components of which were raised against different, representative anti-HIV antibodies that bind to a conserved epitope of the HIV-1 envelope protein gp41. The cocktail was used to detect anti-HIV-1 antibodies from a panel of sera collected from HIV-positive patients, with improved signal-to-noise ratio relative to the gold standard commercial recombinant protein antigen. The capture agents were stable when stored as a powder for two months at temperatures close to 60°C.
Resumo:
Despite over 30 years of effort, an HIV-1 vaccine that elicits protective antibodies still does not exist. Recent clinical studies have identified that during natural infection about 20% of the population is capable of mounting a potent and protective antibody response. Closer inspection of these individuals reveal that a subset of these antibodies, recently termed potent VRC01-like (PVL), derive exclusively from a single human germline heavy chain gene. Induced clonal expansion of the B cell encoding this gene is the first step through which PVL antibodies may be elicited. Unfortunately, naturally occurring HIV gp120s fail to bind to this germline, and as a result cannot be used as the initial prime for a vaccine regimen. We have determined the crystal structure of an important germline antibody that is a promising target for vaccine design efforts, and have set out to engineer a more likely candidate using computationally-guided rational design.
In addition to prevention efforts on the side of vaccine design, recently characterized broadly neutralizing anti-HIV antibodies have excellent potential for use in gene therapy and passive immunotherapy. The separation distance between functional Fabs on an antibody is important due to the sparse distribution of envelop spikes on HIV compared to other viruses. We set out to build and characterize novel antibody architectures by incorporating structured linkers into the hinge region of an anti-HIV antibody b12. The goal was to observe whether these linkers increased the arm-span of the IgG dimer. When incorporated, flexible Gly4Ser repeats did not result in detectable extensions of the IgG antigen binding domains, by contrast to linkers including more rigid domains such as β2-microglobulin, Zn-α2-glycoprotein, and tetratricopeptide repeats (TPRs). This study adds an additional set of linkers with varying lengths and rigidities to the available linker repertoire, which may be useful for the modification and construction of antibodies and other fusion proteins.