887 resultados para Acute Posttraumatic Stress Reaction
Resumo:
Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARγ, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFκB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-α also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-α activation and release, inhibitors of NFκB, specific inhibitors of iNOS and COX-2 activities and PPARγ agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.
Resumo:
A total of 316 samples of nasopharyngeal aspirate from infants up to two years of age with acute respiratory-tract illnesses were processed for detection of respiratory syncytial virus (RSV) using three different techniques: viral isolation, direct immunofluorescence, and PCR. Of the samples, 36 (11.4%) were positive for RSV, considering the three techniques. PCR was the most sensitive technique, providing positive findings in 35/316 (11.1%) of the samples, followed by direct immunofluorescence (25/316, 7.9%) and viral isolation (20/315, 6.3%) (p < 0.001). A sample was positive by immunofluorescence and negative by PCR, and 11 (31.4%) were positive only by RT-PCR. We conclude that RT-PCR is more sensitive than IF and viral isolation to detect RSV in nasopharyngeal aspirate specimens in newborn and infants.
Resumo:
Individuals with epilepsy are at higher risk of sudden unexpected death in epilepsy (SUDEP), responsible for 7.5% to 17% of all deaths in epilepsy. Many factors are current associated with SUDEP and possible effect of stress and cardiac arrhythmia are still not clear. Sudden death syndrome (SDS) in chickens is a disease characterized by an acute death of well-nourished and seeming healthy Gallus gallus after abrupt and brief flapping of their wings, similar to an epileptic seizure, with an incidence estimated as 0.5 to 5% in broiler chickens. A variety of nutritional and environmental factors have been included: but the exactly etiology of SDS is unknown. Studies had suggested that the hearts of broiler chickens are considerably more susceptible to arrhythmias and stress may induce ventricular arrhythmia and thus, sudden cardiac death. In this way, SDS in Gallus gallus could be an interesting model to study SUDEP.
Resumo:
It has been demonstrated that human adipose tissue-derived mesenchymal stem cells (hASCs) enhance vascular density in ischemic tissues, suggesting that they can differentiate into vascular cells or release angiogenic factors that may stimulate neoangiogenesis. Moreover, there is evidence that shear stress (SS) may activate proliferation and differentiation of embryonic and endothelial precursor stem cells into endothelial cells (ECs). In this work, we investigated the effect of laminar SS in promoting differentiation of hASCs into ECs. SS (10 dyn/cm(2) up to 96 h), produced by a cone plate system, failed to induce EC markers (CD31, vWF, Flk-1) on hASC assayed by RT-PCR and flow cytometry. In contrast, there was a cumulative production of nitric oxide (determined by Griess Reaction) and vascular endothelial growth factor (VEGF; by ELISA) up to 96 h of SS stimulation ( NO(2)(-) in nmol/10(4) cells: static: 0.20 +/- 0.03; SS: 1.78 +/- 0.38, n = 6; VEGF in pg/10(4) cells: static: 191.31 +/- v35.29; SS: 372.80 +/- 46.74, n = 6, P < 0.05). Interestingly, the VEGF production was abrogated by 5 mM N(G)-L-nitro-arginine methyl ester (L-NAME) treatment (VEGF in pg/10(4) cells: SS: 378.80 +/- 46.74, n = 6; SS + L-NAME: 205.84 +/- 91.66, n = 4, P < 0.05). The results indicate that even though SS failed to induce EC surface markers in hASC under the tested conditions, it stimulated NO-dependent VEGF production.
Resumo:
We have synthesized the amphiphile photosensitizer PE-porph consisting of a porphyrin bound to a lipid head-group. We studied by optical microscopy the response to light irradiation of giant unilamellar vesicles of mixtures of unsaturated phosphatidylcholine lipids and PE-porph. In this configuration, singlet oxygen is produced at the bilayer surface by the anchored porphyrin. Under irradiation, the PE-porph decorated giant unilamellar vesicles exhibit a rapid increase in surface area with concomitant morphological changes. We quantify the surface area increase of the bilayers as a function of time and photosensitizer molar fraction. We attribute this expansion to hydroperoxide formation by the reaction of the singlet oxygen with the unsaturated bonds. Considering data from numeric simulations of relative area increase per phospholipid oxidized (15%), we measure the efficiency of the oxidative reactions. We conclude that for every 270 singlet oxygen molecules produced by the layer of anchored porphyrins, one eventually reacts to generate a hydroperoxide species. Remarkably, the integrity of the membrane is preserved in the full experimental range explored here, up to a hydroperoxide content of 60%, inducing an 8% relative area expansion.
Resumo:
Background: The involvement of nephrotoxic agents in acute renal failure (ARF) has increased over the last few decades. Among the drugs associated with nephrotoxic ARF are the radiologic contrast media whose nephrotoxic effects have grown, following the increasing diagnostic use of these agents. Methods: We evaluated the effect of iodinated contrast (IC) medium, administered in combination, or not, with hyperhydration or N-acetylcysteine (NAC), on creatinine clearance, production of urinary peroxides and renal histology of rats. Adult Wistar rats treated for 5 days were divided into the following groups: control (saline, 3 ml/kg/day, intraperitoneally [i.p.]), IC (sodium iothalamate meglumine, 3 ml/kg/day i.p.), IC + water (12 mL water, orally + IC, 3 ml/kg/day i.p. after 1 hour), IC + NAC (NAC, 150 mg/kg/day, orally + IC, 3 ml/kg/day i.p. after 1 hour) and IC + water + NAC. Results: IC medium reduced renal function, with maintenance of urinary flow. Hyperhydration did not reduce the nephrotoxic effect of the IC agent, which was observed in the group IC + NAC. The combination of hyperhydration and NAC had no superior protective effect compared with NAC alone. An increase in urinary peroxides was observed in the IC group, with NAC or water or the combination of both reducing this parameter. Histopathologic analysis revealed no significant alterations. Conclusions: In summary, given 5 days previously, NAC was found to be more effective than hyperhydration alone in the prevention of contrast-induced acute renal failure.
Resumo:
The aim of the study was to evaluate the possible relationships between stress tolerance, training load, banal infections and salivary parameters during 4 weeks of regular training in fifteen basketball players. The Daily Analysis of Life Demands for Athletes` questionnaire (sources and symptoms of stress) and the Wisconsin Upper Respiratory Symptom Survey were used on a weekly basis. Salivary cortisol and salivary immunoglobulin A (SIgA) were collected at the beginning (before) and after the study, and measured by enzyme-linked immunosorbent assay (ELISA). Ratings of perceived exertion (training load) were also obtained. The results from ANOVA with repeated measures showed greater training loads, number of upper respiratory tract infection episodes and negative sensation to both symptoms and sources of stress, at week 2 (p < 0.05). Significant increases in cortisol levels and decreases in SIgA secretion rate were noted (before to after). Negative sensations to symptoms of stress at week 4 were inversely and significantly correlated with SIgA secretion rate. A positive and significant relationship between sources and symptoms of stress at week 4 and cortisol levels were verified. In summary, an approach incorporating in conjunction psychometric tools and salivary biomarkers could be an efficient means of monitoring reaction to stress in sport. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Background: The presence of the periodontal ligament (PDL) makes it possible to absorb and distribute loads produced during masticatory function and other tooth contacts into the alveolar process via the alveolar bone proper. However, several factors affect the integrity of periodontal structures causing the destruction of the connective matrix and cells, the loss of fibrous attachment, and the resorption of alveolar bone. Methods: The purpose of this study was to evaluate the stress distribution by finite element analysis in a PDL in three-dimensional models of the upper central incisor under three different load conditions: 100 N occlusal loading at 45 degrees (model 1: masticatory load); 500 N at the incisal edge at 45 degrees (model 2: parafunctional habit); and 800 N at the buccal surface at 90 degrees (model 3: trauma case). The models were built from computed tomography scans. Results: The stress distribution was quite different among the models. The most significant values (harmful) of tensile and compressive stresses were observed in models 2 and 3, with similarly distinct patterns of stress distributions along the PDL. Tensile stresses were observed along the internal and external aspects of the PDL, mostly at the cervical and middle thirds. Conclusions: The stress generation in these models may affect the integrity of periodontal structures. A better understanding of the biomechanical behavior of the PDL under physiologic and traumatic loading conditions might enhance the understanding of the biologic reaction of the PDL in health and disease. J Periodontol 2009;80:1859-1867.
Resumo:
Background: Restriction fragment length polymorphism (RFLP) is a common molecular assay used for genotyping, and it requires validated quality control procedures to prevent mistyping caused by impaired endonuclease activity. We have evaluated the usefulness of a plasmid-based internal control in RFLP assays. Results: Blood samples were collected from 102 individuals with acute myocardial infarction (AMI) and 108 non-AMI individuals (controls) for DNA extraction and laboratory analyses. The 1196C> T polymorphism in the toll-like receptor 4 (TLR4) gene was amplified by mismatched-polymerase chain reaction (PCR). Amplicons and pBluescript II SK-plasmid were simultaneously digested with endonuclease HincII. Fragments were separated on 2% agarose gels. Plasmid was completely digested using up to 55.2 nmL/L DNA solutions and 1 mu L PCR product. Nevertheless, plasmid DNA with 41.4 nM or higher concentrations was incompletely digested in the presence of 7 mL PCR product. In standardized conditions, TLR4 1196C> T variant was accurately genotyped. TLR4 1196T allele frequency was similar between AMI (3.1%) and controls (2.0%, p = 0.948). TLR4 SNP was not associated with AMI in this sample population. In conclusion, the plasmid-based control is a useful approach to prevent mistyping in RFLP assays, and it is validate for genetic association studies such as TLR4 1196C> T.
Resumo:
Yerba mate extract (Ilex paraguariensis) is a Source of phenolic compounds that possesses in vitro antioxidant activities and may contribute to a reduction in the risk of cardiovascular disease. In this Study we examined the acute effects of the consumption of mate infusion on ex vivo plasma and low-density lipoprotein (LDL) oxidation, plasma antioxidant capacity, and platelet aggregation. Twelve healthy fasted subjects ingested 500 mL. of mate infusion and blood samples were collected before and I h after mate intake. Lipid peroxidation of plasma and LDL was monitored by the measurement of cholesteryl-ester hydroperoxides (CE-OOH) and cholesterol oxides. The plasma antioxidant capacity was measured as ferric-reducing antioxidant potential (FRAP). Platelet aggregation was evaluated in platelet-rich plasma Stimulated with adenosine diphosphate and coagulation was tested in platelet-poor plasma. Ingestion of mate infusion diminished the ex vivo oxidizability of both plasma and LDL particles. After mate intake, the CE-OOH levels were around 50% lower in plasma oxidized with copper or 2,2`-azobis[-2-amidine-propane-hydrochloride] (AAPH) and the lag time to plasma oxidation increased 2-fold (P < 0.05). Copper- and AAPH-induced LDL peroxidation were also inhibited by around 50% and 20%, respectively, after mate Consumption (P < 0.05). The levels of various oxysterols were significantly reduced in oxidized-plasma and LDL (P < 0.05) and FRAP increased by 7.7% after mate intake (P < 0.01). However. mate consumption did not inhibit platelet aggregation or blood coagulation. In summary, intake of yerba mate infusion improved the antioxidant capacity and the resistance of plasma and LDL particles to ex vivo lipid peroxidation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Glucocorticoid hormones have been implicated as an important modulator of Trypanosoma cruzi pathogenesis. Since adrenal steroid hormones play a fundamental role in modulating the immune response, we hypothesized that adrenalectomy affect the course of the experimental T. cruzi infection. This study was undertaken to determine the effects of adrenalectomy during the acute phase of T cruzi infection. Blood and tissue parasitism, macrophages, nitric oxide (NO) production and IFN-gamma were evaluated in male Wistar rats infected with the Y strain of T. cruzi. Our results show that adrenalectomized rats displayed increased number of blood and heart parasites accompanied by decreases in the total number of peritoneal macrophages and IFN-gamma when compared to controls. Adrenalectomy also reduced the levels of NO released from peritoneal macrophages of infected animals. These results suggest that adrenal corticosteroid insufficiency due to adrenalectomy could be considered an important factor during development of acute phases of experimental Chagas` disease, enhancing pathogenesis through disturbance of the host`s immune system. (C) 2008 Published by Elsevier Inc.
Resumo:
Social environment can represent a major source of stress affecting cortisol and/or corticosterone levels, thereby altering the immune response. We have investigated the effects of social isolation on the development of Trypanosoma cruzi infection in female Calomys callosus, a natural reservoir of this protozoan parasite. Animals were divided in groups of five animals each. The animals of one group were kept together in a single cage. In a second group, four females were kept together in a cage with one male. In the final group, five individuals were kept isolated in private cages. The isolated animals showed body weight reduction, decreased numbers of peritoneal macrophages, lower global leucocytes counts, smaller lytic antibody percentage and a significantly higher level of blood parasites compared to the other animals. Their behavior was also altered. They were more aggressive than grouped females, or females exposed to the presence of a male. These results suggest that isolation creates a distinct social behavior in which immunity is impaired and pathogenesis is enhanced. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Acai, the fruit of a palm native to the Amazonian basin, is widely distributed in northern South America, where it has considerable economic importance. Whereas individual polyphenolics compounds in Acai have been extensively evaluated, studies of the intact fruit and its biological properties are lacking. Therefore, the present study was undertaken to investigate the in vivo genotoxicity of Acai and its possible antigenotoxicity on doxorubicin (DXR)-induced DNA damage. The Acai pulp doses selected were 3.33, 10.0 and 16.67 g/kg b.w. administered by gavage alone or prior to DXR (16 mg/kg b.w.) administered by intraperitoneal injection. Swiss albino mice were distributed in eight groups for acute treatment with acai pulp (24 h) and eight groups for subacute treatment (daily for 14 consecutive days) before euthanasia. The negative control groups were treated in a similar way. The results of chemical analysis suggested the presence of carotenoids, anthocyanins, phenolic. and flavonoids in Acai pulp. The endpoints analyzed were micronucleus induction in bone marrow and peripheral blood cells polychromatic erythrocytes, and DNA damage in peripheral blood, liver and kidney cells assessed using the alkaline (pH > 13) comet assay. There were no statistically significant differences (p > 0.05) between the negative control and the groups treated with the three doses of Acai pulp alone in all endpoints analyzed, demonstrating the absence of genotoxic effects. The protective effects of Acai pulp were observed in both acute and subacute treatments, when administered prior to DXR. In general, subacute treatment provided greater efficiency in protecting against DXR-induced DNA damage in liver and kidney cells. These protective effects can be explained as the result of the phytochemicals present in Acai pulp. These results will be applied to the developmental of food with functional characteristics, as well as to explore the characteristics of Acai as a health promoter. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The hydroxymethylbilane synthase (HMBS) mRNAs from 44 control individuals and 30 patients suffering from acute intermittent porphyria (AIP), were screened for length differences by reverse transcriptase polymerase chain reaction (RT-PCR) and any abnormalities were characterized by direct sequencing. Examination of the mRNAs extracted from the peripheral blood lymphocytes of the samples revealed varying degrees of alternative splicing, involving the removal of exons 3 and 12. Approximately 10-50% of the mRNA molecules were affected, despite the absence of genomic splice site mutations or any major deviance from consensus splice sequence values. The preliminary data obtained from this study suggest that this event is a normal occurrence in peripheral blood lymphocytes, and may not be associated with the molecular pathology responsible for AIP. (C) 1998 Academic Press Limited.
Resumo:
C5a is implicated as a pathogenic factor in a wide range of immunoinflammatory diseases, including sepsis and immune complex disease, Agents that antagonize the effects of C5a could be useful in these diseases. We have developed some novel C5a antagonists and have determined the acute anti-inflammatory properties of a new small molecule C5a receptor antagonist against C5a- and LPS-induced neutrophil adhesion and cytokine expression, as well as against some hallmarks of the reverse Arthus reaction in rats. We found that a single i.v. dose (1 mg/kg) of this antagonist inhibited both C5a- and LPS-induced neutropenia and elevated levels of circulating TNF-alpha, as well as polymorphonuclear leukocyte migration, increased TNF-alpha levels and vascular leakage at the site of immune complex deposition. These results indicate potent anti-inflammatory activities of a new C5a receptor antagonist and provide more evidence for a key early role for C5a in sepsis and the reverse Arthus reaction. The results support a role for antagonists of C5a receptors in the therapeutic intervention of immunoinflammatory disease states such as sepsis and immune complex disease.