970 resultados para 091201 Ceramics
Resumo:
Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Materials and Methods: Ten blocks (5 ×6 × 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-μm Al2O3 particles + silanization, (2) silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37°C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (≤ 0.05). Results: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-μm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). Conclusion: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-μm Al2O3 and silanization.
Resumo:
Lanthanum-modified bismuth titanate, Bi4 - xLaxTi3O12 (BLT) ceramics, with x ranging from 0 to 0.75 were prepared by the polymeric precursor method. Orthorhombicity of the system is decreased with the increase of lanthanum content in the bismuth titanate (BIT) crystal lattice. No secondary phases were evident after lanthanum addition. Increasing lanthanum content causes a structural distortion in the bismuth titanate lattice. The shape of the grains is strongly influenced by the lanthanum added to the system. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Complex dielectric permittivity measurements in Pb Nb2 O6 ceramics were performed in a frequency and temperature range of 1 kHz-1 MHz and from 15 to 900 K, respectively. The results revealed two dielectric anomalies showing typical characteristics of relaxor ferroelectric materials at cryogenic temperatures. Comparison with other tetragonal tungsten bronze (TTB) structure-type materials suggests the existence of successive phase transitions, which until now were not reported. The observed low temperature dielectric behaviors seem to be due to intrinsic physical characteristics related to the TTB structure. © 2007 American Institute of Physics.
Resumo:
Aim: The aim of this study was to evaluate in situ, the early bacterial colonization on feldspar-ceramics submitted to different glazing. Methods and Materials: Fourteen standardized disc specimens (diameter: 5 mm, thickness: 1.5 mm) of each of two micro-particulate feldspathic ceramics (VM7 and VM13, Vita) were produced according to manufacturers' specifications for a total of 28 specimens (24 for the analysis of biofilm and 4 for topographic analysis analyzing the ceramic surfaces). Specimens from each type of ceramic were submitted to two different glazing methods composing four groups: VM7 glazed using glazing liquid Vita Akzent® 25 (G1) and glaze firing (G2), VM13 glazed using glazing liquid (G3) and glaze firing (G4). Six individuals (n=6) wore oral appliances with four ceramic specimens, fixed on the buccal face of the appliances. After 8 hours, each sample was evaluated for the presence (1) or absence (0) of bacterial colonization under a scanning electron microscope (SEM) on five randomly selected fields. The value for each sample was cumulative of the results observed in the fields. One sample from each group was evaluated under a SEM to verify the topographic pattern. Results: There was no difference with regard to bacterial colonization between the feldspar-ceramics and between the glazing types (Kruskal-Wallis non-parametric test). Conclusion: Feldspar-ceramics submitted to firing or glaze firing with Vita Akzent® 25 present a similar condition for in situ bacterial colonization. The similar topographic pattern of the ceramic surfaces seems to have influenced the bacterial colonization.
Resumo:
Objectives: The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods: Metallic frameworks (25 mm × 3 mm × 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 μm aluminum oxide at the central area of the frameworks (8 mm × 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: 1 mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 °C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 °C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 °C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey's test (α = 0.05). Results: The mean flexural strength values for the ceramic-gold alloy combination (55 ± 7.2 MPa) were significantly higher than those of the ceramic-Ti cp combination (32 ± 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 ± 6.6 and 53 ± 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 ± 6.8 and 29 ± 6.8 MPa, respectively) compared to the control group (58 ± 7.8 and 39 ± 5.1 MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey's test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance: Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. © 2007 Academy of Dental Materials.
Resumo:
This study sought to investigate the surface roughness and the adherence of Streptococcus mutans (in the presence and absence of saliva) to ceramics and composites. The early dental biofilms formed in situ on the materials were illustrated, using scanning electron microscopy (SEM). Feldspathic and leucite/feldspathic ceramics and microhybrid and microfilled composites were evaluated. Human dental enamel was used as the control. Standardized specimens of the materials were produced and surface roughness was analyzed. The adhesion tests were carried out in 24-well plates and colony forming units (CFU/mL) were evaluated. Values of roughness (μm) and adherence (CFU/mL) were analyzed statistically. Of all the surfaces tested, enamel was the roughest. Leucite/feldspathic ceramics were rougher than the feldspathic ceramic, while composites were similar statistically. Enamel offered the highest level of adherence to uncoated and saliva-coated specimens, while the leucite/feldspathic ceramic demonstrated greater adherence than the feldspathic ceramic and the composites were similar statically. The rougher restorative materials increased the adherence of S, mutans on the material surfaces.
Resumo:
During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is generated, principally in three areas: the shear zone, rake face and at the clearance side of the cutting edge. Excessive heat will cause undesirable high temperature in the tool which leads to softening of the tool and its accelerated wear and breakage. Nowadays the advanced ceramics are widely used in cutting tools. In this paper a composition special of Si3N4 was sintering, characterized, cut and ground to make SNGN120408 and applyed in machining gray cast iron with hardness equal 205 HB in dry cutting conditions by using digital controlled computer lathe. The tool performance was analysed in function of cutting forces, flank wear, temperature and roughness. Therefore metal removing process is carried out for three different cutting speeds (300 m/min, 600 m/min, and 800 m/min), while a cutting depth of 1 mm and a feed rate of 0.33 mm/rev are kept constant. As a result of the experiments, the lowest main cutting force, which depends on cutting speed, is obtained as 264 N at 600 m/min while the highest main cutting force is recorded as 294 N at 300 m/min.
Resumo:
Automotive parts manufacture by machining process using silicon nitride-based ceramic tool development in Brazil already is a reality. Si 3N4-based ceramic cutting tools offer a high productivity due to their excellent hot hardness, which allows high cutting speeds. Under such conditions the cutting tool must be resistant to a combination of mechanical, thermal and chemical attacks. Silicon nitride based ceramic materials constitute a mature technology with a very broad base of current and potential applications. The best opportunities for Si3N 4-based ceramics include ballistic armor, composite automotive brakes, diesel particulate filters, joint replacement products and others. The goal of this work was to show latter advance in silicon nitride manufacture and its recent evolution on machining process of gray cast iron, compacted graphite iron and Ti-6Al-4V. Materials characterization and machining tests were analyzed by X-Ray Diffraction, Scanning Electron Microscopy, Vickers hardness and toughness fracture and technical norm. In recent works the authors has been proved to advance in microstructural, mechanical and physic properties control. These facts prove that silicon nitride-based ceramic has enough resistance to withstand the impacts inherent to the machining of gray cast iron (CI), compacted graphite iron (CGI) and Ti-6Al-4V (6-4). Copyright © 2008 SAE International.
Resumo:
Barium zirconate titanate Ba(Ti0.90Zr0.10)O3 ceramics doped with WO
Resumo:
This study describes observation of piezoelectric response of Ba(Zr 0.10Ti 0.90.O3 ceramics modified with tungsten (BZT:2W) by the mixed oxide method. According to X ray diffraction analysis, the ceramics are free of secondary phases. Transmission electron microscopy (TEM) analyses reveals the absence of segregates in the grain boundaries indicates the high solubility of WO3 in the BZT matrix. The dielectric permittivity measured at a frequency of 10 KHz was equal to 6500 with dieletric loss of 0.15. A typical hysteresis loop was observed at room temperature. Electron Paramagnetic Resonance (EPR) analyses reveals that substitution of W6+ by Ti4+ causes distortion in the crystal structure changing lattice parameter. Polarization reversal was investigated by applying dc voltage through a conductive tip during the area scanning. Piezoelectric force microscopy images reveals that in-plane response may not change its sign upon polarization switching, while the out-of-plane response does. Copyright © 2010 American Scientific Publishers.
Resumo:
This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 oC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.
Resumo:
Modified fluorcanasite glasses were fabricated by either altering the molar ratios of Na 2O and CaO or by adding P 2O 5 to the parent stoichiometric glass compositions. Glasses were converted to glass-ceramics by a controlled two-stage heat treatment process. Rods (2 mm x 4 mm) were produced using the conventional lost-wax casting technique. Osteoconductive 45S5 bioglass was used as a reference material. Biocompatibility and osteoconductivity were investigated by implantation into healing defects (2 mm) in the midshaft of rabbit femora. Tissue response was investigated using conventional histology and scanning electron microscopy. Histological and histomorphometric evaluation of specimens after 12 weeks implantation showed significantly more bone contact with the surface of 45S5 bioglass implants when compared with other test materials. When the bone contact for each material was compared between experimental time points, the Glass-Ceramic 2 (CaO rich) group showed significant difference (p = 0.027) at 4 weeks, but no direct contact at 12 weeks. Histology and backscattered electron photomicrographs showed that modified fluorcanasite glass-ceramic implants had greater osteoconductivity than the parent stoichiometric composition. Of the new materials, fluorcanasite glass-ceramic implants modified by the addition of P 2O 5 showed the greatest stimulation of new mineralized bone tissue formation adjacent to the implants after 4 and 12 weeks implantation. © 2010 Wiley Periodicals, Inc.
Resumo:
The dielectric properties of the 0.65[Pb(Mg 1/3Nb 2/3)O 3]-0.35PbTiO 3 ferroelectric ceramic composition were investigated viewing the capability to be used for tunable microwave applications. The dielectric response has been studied for three selected temperatures (300 K, 370 K and 400 K), below the paraelectric- ferroelectric phase transition temperature, as a function of the applied 'bias' electric field. The obtained dielectric tunability was found to be around 60 %, under an electric field of 19 kV/cm, which makes the studied ceramic composition an excellent candidate for application in the electro-electronic industry, as tunable devices. © 2010 IEEE.
Resumo:
Bismuth titanate ceramics (Bi 4Ti 3O 12) with 10 wt% in excess of bismuth (BIT10) were prepared by the polymeric precursor method and sinterized in microwave (MW) and conventional furnaces (CF). The effect of microwave energy on structural and electrical behavior of BIT10 ceramics was investigated by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrical measurements. The results of the BIT10 ceramics processed in the microwave furnace (MW) showed a high structural organization compared to conventional treatment (CF). Size of grains and dieletrical properties are influenced by annealing conditions while coercitive field is not dependent on it. The maximum dielectric permittivity (12000) was obtained for the sample sintered in the microwave furnace. Piezoelectric force microscopy images reveals that in-plane response may not change its sign upon polarization switching, while the out-of-plane response does with the influence of microwave energy. Copyright © 2010 American Scientific Publishers All rights reserved.
Resumo:
Dielectric spectroscopy was used in this study to examine polycrystalline vanadium and tungstendoped BaZr 0.1Ti 0.90O 3 (BZT10:2V and BZT10:2W) ceramics obtained by the mixed oxide method. According to X-ray diffraction analyses, addition of vanadium and tungsten lead to ceramics free of secondary phases. SEM analyses reveal that both dopants result in slower oxygen ion motion and consequently lower grain growth rate. Temperature dependence dielectric study showed normal ferroelectric to paraelectric transition well above the room temperature for the BZT10 and BZT10:2V ceramics. However, BZT10:2W ceramic showed a relaxor-like behavior near phase transition characterized by the empirical parameter γ. Piezoelectric force microscopy images reveals that the piezoelectric coefficient is strongly influenced by type of donor dopant suggesting promising applications for dynamic random access memories and data-storage media. Copyright © 2010 American Scientific Publishers All rights reserved.