863 resultados para well shooting
Resumo:
A detailed experimental study of electron cyclotron resonance (CR) has been carried out at 4.2 K in three modulation-doped GaAs/Al0.3Ga0.7As multiple quantum well samples in fields up to 30 T. A strong avoided-level-crossing splitting of the CR energies due to resonant magnetopolaron effects is observed for all samples near the GaAs reststrahlen region. Resonant splittings in the region of AlAs-like interface phonon modes of the barriers are observed in two samples with narrower well width and smaller doping concentration. The interaction between electrons and the AlAs interface optical phonon modes has been calculated for our specific sample structures in the framework of the memory-function formalism. The calculated results are in good agreement with the experimental results, which confirms our assignment of the observed splitting near the AlAs-like phonon region is due to the resonant magnetopolaron interaction of electrons in the wells with AlAs-like interface phonons. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The conduction-band offset Delta E-C has been determined for a molecular beam epitaxy grown GaAs/In0.2Ga0.8As single quantum-well structure, by measuring the capacitance-voltage (C - V) profiling, taking into account a correction for the interface charge density, and the capacitance transient resulting from thermal emission of carriers from the quantum well, respectively. We found that Delta E-C = 0.227 eV, corresponding to about 89% Delta E-g, from the C - V profiling; and Delta E-C = 0.229eV, corresponding to about 89.9% Delta E-g, from the deep-level transient spectroscopy (DLTS) technique. The results suggest that the conduction-band discontinuity Delta E-C obtained from the C-V profiling is in good agreement with that obtained from the DLTS technique. (C) 1998 American Institute of Physics.
Resumo:
When an intersubband relaxation is involved in vertical transport in a tunneling heterostructure, the magnetic suppression of the intersubband LO or LA phonon scattering may also give rise to a noticeable depression of the resonant tunneling current, unrelated to the Coulomb correlation effect. The slowdown of the intersubband scattering rate makes fewer electrons able to tunnel resonantly between two adjacent quantum wells (QWs) in a three-barrier, two-well heterostructure. The influence of the magnetic field on the intersubband relaxation can be studied in an explicit way by a physical model based on the dynamics of carrier populations in the ground and excited subbands of the incident QW. (C) 1998 American Institute of Physics. [S0003-6951(98)00925-5].
Resumo:
The authors report on the fabrication of 980 nm InGaAs strained quantum well lasers with hybrid materials of InGaAsP as waveguide and AlGaAs as cladding grown by metal organic chemical vapour deposition. The InGaAs/InGaAsP/AlGaAs diode lasers (100 x 800 mu m) with broadened waveguide structure exhibit a threshold current of 180 mA, a slope efficiency of 1.0 W/A, and a high characteristic temperature coefficient (T-0) of 230 K.
Resumo:
In the framework of the effective-mass envelope-function theory, the electronic and optical properties of a spherical core-shell quantum-dot quantum well (QDQW) structure with one and two wells have been investigated. The results show that the energies of electron and hole states depend sensitively on the well thickness and core radius of quantum-dot quantum well structure. An interesting spatially separated characteristic of electron and hole in QDQW is found and enhanced significantly in the two-wells case. The normalized oscillator strength for the optical transition between the electron and hole states in QDQW exhibits a deep valley at some special well thickness. The Coulomb interaction between the electron and hole is also taken into account. [S0163-1829(98)02412-6].
Resumo:
Within the framework of the effective-mass envelope-function theory, the field-dependent intersubband optical properties of a Al0.4Ga0.6As/Al0.2Ga0.8As/GaAs step quantum well are investigated theoretically based on the periodic boundary condition. A very large Stark shift occurs when the lowest subband electron remains confined to the small well while the higher subband electron confined to the big well. The optical nonlinearity in a step well due to resonant intersubband transition (ISBT) is analyzed using a density-matrix approach. The second-harmonic generation coefficient chi(2 omega)((2)) and nonlinear optical rectification chi(0)((2)) have also been investigated theoretically. The results show that the ISBT in a step well can generate very large second order optical nonlinearities, chi(0)((2)) and chi(2 omega)((2)) can be tuned by the electric field over a wide range.
Resumo:
A specially designed quantum well laser for achieving extremely low vertical beam divergence was reported and theoretically investigated. The laser structure was characterized by two low index layers inserted between the waveguide layers and the cladding layers. The additional layers were intended to achieve wide optical spread in the cladding layers and strong confinement in the active region. This enabled significant reduction of beam divergence with no sacrifice in threshold current density. The numerical results showed that lasers with extremely low vertical beam divergence from 20 degrees down to 11 degrees and threshold current density of less than 131 A/cm(2) can be easily achieved by optimization of the structure parameters. Influences of individual key structure parameters on beam divergence and threshold current density are analyzed. Attention is also paid to the minimum cladding layer thicknesses needed to maintain low threshold current densities and low internal loss. The near and far field patterns are given and discussed. (C) 1998 American Institute of Physics.
Resumo:
We have shown that high energy ion implantation enhanced intermixing (HE-IIEI) technology for quantum well (QW) structures is a powerful technique which can be used to blue shift the band gap energy of a QW structure and therefore decrease its band gap absorption. Room temperature (RT) photoluminescence (PL) and guided-wave transmission measurements have been employed to investigate the amount of blue shift of the band gap energy of an intermixed QW structure and the reduction of band gap absorption, Record large blue shifts in PL peaks of 132 nm for a 4-QW InGaAs/InGaAsP/InP structure have been demonstrated in the intermixed regions of the QW wafers, on whose non-intermixed regions, a shift as small as 5 nm is observed. This feature makes this technology very attractive for selective intermixing in selected areas of an MQW structure. The dramatical reduction in band gap absorption for the InP based MQW structure has been investigated experimentally. It is found that the intensity attenuation for the blue shifted structure is decreased by 242.8 dB/cm for the TE mode and 119 dB/cm for the TM mode with respect to the control samples. Electro-absorption characteristics have also been clearly observed in the intermixed structure. Current-Voltage characteristics were employed to investigate the degradation of the p-n junction in the intermixed region. We have achieved a successful fabrication and operation of Y-junction optical switches (JOS) based on MQW semiconductor optical amplifiers using HE-IIEI technology to fabricate the low loss passive waveguide. (C) 1997 Published by Elsevier Science B.V.
Resumo:
The electronic states and optical transition properties of silicon quantum-well layers embedded by SiO2 layers are studied by the empirical pseudopotential homojunction model. The energy bands, wave functions, and the optical transition matrix elements are obtained for layers of thickness from 1 to 6 nm, and three oriented directions (001), (110), and (111). It is found that for Si layers in the (001) direction the energy gap is pseudodirect, for these in the (111) direction the energy gap is indirect, while for those in the (110) direction the energy gap is pseudodirect or indirect for a thickness smaller or larger than 3 nm, respectively. The optical transition matrix elements are smaller than that of diner transition, and increase with decreasing layer thickness. When the thickness of a layer is smaller than 2 nm, the Si QW layers have larger transition matrix elements. It is caused by mixing of bulk X states with the Gamma(1) state. The calculated results are compared with experimental results.
Resumo:
The quantum-confined Stark effect and the Franz-Keldysh oscillation of a single quantum well (SQW) GaAs/AlxGa1-xAs electrode were studied in non-aqueous hydroquinone + benzoquinone solution with electrolyte electroreflectance spectroscopy. By investigation of the relation of the quantum-confined Stark effect and the Franz-Keldysh oscillation with applied external bias, the interfacial behaviour of an SQW electrode was analysed. (C) 1997 Elsevier Science S.A.
Resumo:
Wavelength tunable electro-absorption modulated distributed Bragg reflector lasers (TEMLs) are promising light source in dense wavelength division multiplexing (DWDM) optical fiber communication system due to high modulation speed, small chirp, low drive voltage, compactness and fast wavelength tuning ability. Thus, increased the transmission capacity, the functionality and the flexibility are provided. Materials with bandgap difference as large as 250nm have been integrated on the same wafer by a combined technique of selective area growth (SAG) and quantum well intermixing (QWI), which supplies a flexible and controllable platform for the need of photonic integrated circuits (PIC). A TEML has been fabricated by this technique for the first time. The component has superior characteristics as following: threshold current of 37mA, output power of 3.5mW at 100mA injection and 0V modulator bias voltage, extinction ratio of more than 20 dB with modulator reverse voltage from 0V to 2V when coupled into a single mode fiber, and wavelength tuning range of 4.4nm covering 6 100-GHz WDM channels. A clearly open eye diagram is observed when the integrated EAM is driven with a 10-Gb/s electrical NRZ signal. A good transmission characteristic is exhibited with power penalties less than 2.2 dB at a bit error ratio (BER) of 10(-10) after 44.4 km standard fiber transmission.
Resumo:
Width varied quantum wells show a more flat and wide gain spectrume (about 115nm) than that of identical miltiple quantum well. A new fabricating method was demonstrated in this paper to realize two different Bragg grating in an selectable DFB laser based on this material grown identical chip using traditional holographic exposure. A wavelength by MOVPE was presented. Two stable distinct single longitudinal mode of 1510nm and 1530nm with SMSR of 45 dB were realized.
Resumo:
In AlGaInP/GaInP multi-quantum well (MQW) lasers, the electron leakage current is a much more serious problem than that in laser diodes with longer wavelength. To further improve the output performance, the leakage current should be analyzed. In this letter, the temperature dependence of electrical derivative characteristics in AlGaInP/GaInP multi-quantum well lasers was measured, and the potential barrier for electron leakage was obtained. With the help of secondary ion mass spectroscopy (SIMS) measurement, theoretical analysis of the potential barrier was presented and compared with the measurement result. The influence of p-cladding doping level and doping profile on the potential barrier was discussed, and this can be helpful in metalorganic chemical vapor deposition (MOCVD) growth.
Resumo:
The band structures of wurtzite ZnO are calculated using the empirical pseudopotential method (EPM). The 8 parameters of the Zn and O atom pesudopotential form factors with Schluter's formula are obtained. The effective mass parameters are extracted by using k.p Hamiltonian to fit the EPM results. The calculated band edge energies (E-g, E-A, E-B, and E-C) at Gamma point are in good agreement with experimental results. The ordering of ZnO at the top of valence band is found to be A(Gamma(7))-B(Gamma(9))-C(Gamma(7)) due to a negative spin-orbit (SO) splitting. Based on the band parameters obtained, the valence hole subbands of wurzite ZnO/MgxZn1-xO tensile-strained quantum wells (QWs) with different well widths and Mg compositions are calculated using 6-band k.p method. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated a two-contact quantum well infrared photodetector (QWIP) exhibiting simultaneous photoresponse in both the mid- and the long-wavelength atmospheric windows of 3-5 mu m and of 8-12 mu m. The structure of the device was achieved by sequentially growing a mid-wavelength QWIP part followed by a long-wavelength QWIP part separated by an n-doped layer. Compared with the conventional dual-band QWIP device utilizing three ohmic contacts, our QWIP is promising to greatly facilitate two-color focal plane array (FPA) fabrication by reducing the number of the indium bumps per pixel from three to one just like a monochromatic FPA fabrication and to increase the FPA fill factor by reducing one contact per pixel; another advantage may be that this QWIP FPA boasts broadband detection capability in the two atmospheric windows while using only a monochromatic readout integrated circuit. We attributed this simultaneous broadband detection to the different distributions of the total bias voltage between the mid- and long-wavelength QWIP parts.