983 resultados para tertiary transition
Resumo:
Promotional article on a presentation at the Parent Educator Connector conference.
Resumo:
General information on the Council Bluffs Youth Connections prototype under Improving Transition Outcomes with Iowa Vocational Rehabilitation Services.
Resumo:
General information on the Henry County Transition Partners community prototype under Improving Transition Outcomes with Iowa Vocational Rehabilitation Services.
Resumo:
Henry County's Transition Partners' youth focus group interview invitation.
Resumo:
Henry County's Transition Partners' focus group invitation specifically for teachers.
Resumo:
Interview questions used by Henry County Transition Partners during focus groups and individual interviews.
Resumo:
Information gleaned from the focus groups and individual interviews with educators, youth and parents.
Resumo:
Interleukin-7 (IL-7) is known since many years as stromal-cell derived cytokine that plays a key role for the adaptive immune system. It promotes lymphocyte development in the bone marrow and thymus as well as naive and memory T cell homeostasis in the periphery. More recently, IL-7 reporter mice and other approaches have led to the further characterization of the various stromal cell sources of IL-7 in secondary lymphoid organs (SLO) and other tissues. We will review these advances along with a discussion of the regulation of IL-7 and its receptor, and compare the biological effects IL-7 has on adaptive as well as innate immune cells in SLO. Finally, we will review the role of IL-7 in development of SLO and tertiary lymphoid tissues that frequently are associated with sites of chronic inflammation.
Resumo:
Asymmetric fiscal decentralization, by which we mean different fiscal arrangements between the central government and different groups of, or individual, lower-level governments, may be justified from an economic efficiency perspective. As argued by Tiebout (1956), Oates (1972) and others, a decentralized system of regional and local governments is better able to accommodate differences in tastes for public goods and services. This efficiency argument calls for decentralization of fiscal authority to regional and local governments, but not necessarily asymmetric decentralization. However, when the differences in tastes for public goods and services arise out of differences in history, culture and language across regions of a country, asymmetric treatment may be justified. History, culture and language may influence how a group of people (a region) views autonomy, independence and fiscal authority. Some regions may have had experience with autonomous government in the past, they may have a culture that is strongly reliant upon (or leery of) the central government, or they may be fearful of losing their separate languages if they do not have special arrangements. To accommodate differences in taste for independence, autonomy, and fiscal authority, it may be necessary to have different fiscal arrangements between the central government and the different regions comprising the country.
Resumo:
The case of two transition tables is considered, that is two squareasymmetric matrices of frequencies where the rows and columns of thematrices are the same objects observed at three different timepoints. Different ways of visualizing the tables, either separatelyor jointly, are examined. We generalize an existing idea where asquare matrix is descomposed into symmetric and skew-symmetric partsto two matrices, leading to a decomposition into four components: (1)average symmetric, (2) average skew-symmetric, (3) symmetricdifference from average, and (4) skew-symmetric difference fromaverage. The method is illustrated with an artificial example and anexample using real data from a study of changing values over threegenerations.
Resumo:
The Crystalline Nappe of the High Himalayan Crystalline has been examined along the Kulu Valley and its vicinity (Mandi-Khoksar transect). This nappe was believed to have undergone deformation related only to its transport towards the SW essentially during the `'Main Central Thrust event''. New data has led to the conclusion that during the Himalayan orogeny, two distinctive phases, related to two opposite transport directions, characterize the evolution of this part of the chain, before the creation of the late NE-vergent backfolding. The first phase corresponds to an early NE-vergent folding and thrusting, creating the Tandi Syncline and the NE-oriented Shikar Beh Nappe stack, with a displacement amplitude of about 50 km. Two schistosities, together with a strong stretching lineation are developed at a deep tectonic level under amphibolite facies conditions (kyanite-staurolite-garnet-two mica schists). At a higher tectonic level and in the southern part of the section (Tandy Syncline and southern Kulu Valley between Kulu and Mandi) one or two schistosities are developed in the greenschist facies grade rocks (garnet-biotite and biotite schists). These structures and the associated Barrovian type metamorphism are all related to the NE-verging Shikar Beh Nappe. The creation of the NE-verging Shikar Beh Nappe may be explained by the reactivation of a SW dipping listric normal fault of the N Indian flexural passive margin, during the early stages of the Himalayan orogeny. In the second phase, the still hot metamorphic rocks of the Shikar Beh Nappe were folded and thrust towards the SW (mainly along the MBT and the MCT with a displacement in excess of 100 km) onto the cold, low-grade metamorphic rocks of the Larji-Kulu-Rampur Window or, near Mandi, on the non-metamorphic sandstones of the Ganges Molasse (Siwaliks). Sense of shear criteria and a strong NE-SW stretching-lineation indicate that the Crystalline Nappe has been overthrusted towards the SW. Thermometry on synkinematically crystallised garnet-biotite and garnet-hornblende pairs reveals the lower amphibolite facies temperature conditions related to the Crystalline Nappe formation. From the muscovite and biotite Rb-Sr cooling ages, the Shikar Beh Nappe emplacement occurred before 32 Ma and the southwestward thrusting of the Crystalline Nappe began before 21 Ma. Our model involving two opposite directions of thrusting goes against the conventional idea of only one main SW-oriented transport direction in the High Himalayan Crystalline Nappes.