545 resultados para smoothing
Resumo:
Phosphorus is one of the limiting nutrients for sugarcane development in Brazilian soils. The spatial variability of this nutrient is great, defined by the properties that control its adsorption and desorption reactions. Spatial estimates to characterize this variability are based on geostatistical interpolation. However, inherent uncertainties in the procedure of these estimates are related to the variability structure of the property under study and the sample configuration of the area. Thus, the assessment of the uncertainty of estimates associated with the spatial distribution of available P (Plabile) is decisive to optimize the use of phosphate fertilizers. The purpose of this study was to evaluate the performance of sequential Gaussian simulation (sGs) and ordinary kriging (OK) in the modeling of uncertainty in available P estimates. A sampling grid with 626 points was established in a 200-ha experimental sugarcane field in Tabapuã, São Paulo State. The sGs algorithm generated 200 realizations. The sGs realizations reproduced the statistics and the distribution of the sample data. The G statistic (0.81) indicated good agreement between the values of simulated and observed fractions. The sGs realizations preserved the spatial variability of Plabile without the smoothing effect of the OK map. The accuracy in the reproduction of the variogram of the sample data obtained by the sGs realizations was on average 240 times higher than that obtained by OK. The uncertainty map, obtained by OK, showed less variation in the study area than that obtained by sGs. Thus, the evaluation of uncertainties by sGs was more informative and can be used to define and delimit specific management areas more precisely.
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The continuous advance of the Brazilian economy and increased competition in the heavy equipment market, increasingly point to the need for accurate sales forecasting processes, which allow an optimized strategic planning and therefore better overall results. In this manner, we found that the sales forecasting process deserves to be studied and understood, since it has a key role in corporate strategic planning. Accurate forecasting methods enable direction of companies to circumvent the management difficulties and the variations of finished goods inventory, which make companies more competitive. By analyzing the stages of the sales forecasting it was possible to observe that this process is methodical, bureaucratic and demands a lot of training for their managers and professionals. In this paper we applied the modeling method and the selecting process which has been done for Armstrong to select the most appropriate technique for two products of a heavy equipment industry and it has been through this method that the triple exponential smoothing technique has been chosen for both products. The results obtained by prediction with the triple exponential smoothing technique were better than forecasts prepared by the industry experts
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: To evaluate the relationship between glaucomatous structural damage assessed by the Cirrus Spectral Domain OCT (SDOCT) and functional loss as measured by standard automated perimetry (SAP). Methods: Four hundred twenty-two eyes (78 healthy, 210 suspects, 134 glaucomatous) of 250 patients were recruited from the longitudinal Diagnostic Innovations in Glaucoma Study and from the African Descent and Glaucoma Evaluation Study. All eyes underwent testing with the Cirrus SDOCT and SAP within a 6-month period. The relationship between parapapillary retinal nerve fiber layer thickness (RNFL) sectors and corresponding topographic SAP locations was evaluated using locally weighted scatterplot smoothing and regression analysis. SAP sensitivity values were evaluated using both linear as well as logarithmic scales. We also tested the fit of a model (Hood) for structure-function relationship in glaucoma. Results: Structure was significantly related to function for all but the nasal thickness sector. The relationship was strongest for superotemporal RNFL thickness and inferonasal sensitivity (R(2) = 0.314, P < 0.001). The Hood model fitted the data relatively well with 88% of the eyes inside the 95% confidence interval predicted by the model. Conclusions: RNFL thinning measured by the Cirrus SDOCT was associated with correspondent visual field loss in glaucoma.
Resumo:
Electrothermomechanical MEMS are essentially microactuators that operate based on the thermoelastic effect induced by the Joule heating of the structure. They can be easily fabricated and require relatively low excitation voltages. However, the actuation time of an electrothermomechanical microdevice is higher than the actuation times related to electrostatic and piezoelectric actuation principles. Thus, in this research, we propose an optimization framework based on the topology optimization method applied to transient problems, to design electrothermomechanical microactuators for response time reduction. The objective is to maximize the integral of the output displacement of the actuator, which is a function of time. The finite element equations that govern the time response of the actuators are provided. Furthermore, the Solid Isotropic Material with Penalization model and Sequential Linear Programming are employed. Finally, a smoothing filter is implemented to control the solution. Results aiming at two distinct applications suggest the proposed approach can provide more than 50% faster actuators. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper we extend semiparametric mixed linear models with normal errors to elliptical errors in order to permit distributions with heavier and lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum penalized likelihood estimates (MPLEs) which appear to be robust against outlying observations in the sense of the Mahalanobis distance. A reweighed iterative process based on the back-fitting method is proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to study the sensitivity of the MPLEs. Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.
Resumo:
Abstract Background With the development of DNA hybridization microarray technologies, nowadays it is possible to simultaneously assess the expression levels of thousands to tens of thousands of genes. Quantitative comparison of microarrays uncovers distinct patterns of gene expression, which define different cellular phenotypes or cellular responses to drugs. Due to technical biases, normalization of the intensity levels is a pre-requisite to performing further statistical analyses. Therefore, choosing a suitable approach for normalization can be critical, deserving judicious consideration. Results Here, we considered three commonly used normalization approaches, namely: Loess, Splines and Wavelets, and two non-parametric regression methods, which have yet to be used for normalization, namely, the Kernel smoothing and Support Vector Regression. The results obtained were compared using artificial microarray data and benchmark studies. The results indicate that the Support Vector Regression is the most robust to outliers and that Kernel is the worst normalization technique, while no practical differences were observed between Loess, Splines and Wavelets. Conclusion In face of our results, the Support Vector Regression is favored for microarray normalization due to its superiority when compared to the other methods for its robustness in estimating the normalization curve.
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
Resumo:
[EN] In the last years we have developed some methods for 3D reconstruction. First we began with the problem of reconstructing a 3D scene from a stereoscopic pair of images. We developed some methods based on energy functionals which produce dense disparity maps by preserving discontinuities from image boundaries. Then we passed to the problem of reconstructing a 3D scene from multiple views (more than 2). The method for multiple view reconstruction relies on the method for stereoscopic reconstruction. For every pair of consecutive images we estimate a disparity map and then we apply a robust method that searches for good correspondences through the sequence of images. Recently we have proposed several methods for 3D surface regularization. This is a postprocessing step necessary for smoothing the final surface, which could be afected by noise or mismatch correspondences. These regularization methods are interesting because they use the information from the reconstructing process and not only from the 3D surface. We have tackled all these problems from an energy minimization approach. We investigate the associated Euler-Lagrange equation of the energy functional, and we approach the solution of the underlying partial differential equation (PDE) using a gradient descent method.
Resumo:
[EN]We present a new method to construct a trivariate T-spline representation of complex solids for the application of isogeometric analysis. We take a genus-zero solid as a basis of our study, but at the end of the work we explain the way to generalize the results to any genus solids. The proposed technique only demands a surface triangulation of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and the parametric domain, the unitary cube. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying a mesh untangling and smoothing procedure...