952 resultados para setup carryover
Resumo:
O objetivo deste estudo foi avaliar a atividade residual de herbicidas utilizados no manejo de plantas daninhas em pré-emergência da cultura da soja, bem como verificar seus efeitos sobre o milheto cultivado em sucessão. Utilizaram-se parcelas de 80 m², em delineamento de blocos casualizados, com quatro repetições, em esquema de parcelas subdivididas 5 x 4, correspondendo à aplicação dos herbicidas imazaquin (0,160 kg ha-1), diclosulam (0,035 kg ha-1), sulfentrazone (0,600 kg ha-1) e flumioxazin (0,050 kg ha-1) e uma testemunha, aplicados logo após a semeadura do cultivar de soja Msoy-6101. Nas subparcelas, realizou-se a semeadura do milheto, cultivar ADR-7010, em quatro períodos, correspondendo a 0, 40, 80 e 120 dias após a aplicação dos herbicidas (DAA). Durante a condução do ensaio, foram determinados os níveis de intoxicação, estande, altura e massa seca da parte aérea das plantas de milheto. No final do ciclo foi avaliado o rendimento de grãos da cultura. O híbrido de milheto ADR-7010 apresentou elevada sensibilidade com relação à atividade residual dos herbicidas sulfentrazone, diclosulam e imazaquin quando cultivado logo após a aplicação destes. A bioatividade dos herbicidas imazaquin, diclosulam e flumioxazin não foi suficiente para alterar o rendimento de grãos do milheto cultivado em sucessão à soja (120 DAA), mostrando que esse intervalo de tempo é suficiente para dissipação desses herbicidas. Dos herbicidas pré-emergentes avaliados, o sulfentrazone apresentou maior atividade residual, influenciado negativamente o rendimento da cultura durante o intervalo de tempo estudado.
Resumo:
O objetivo deste trabalho foi avaliar a atividade residual de herbicidas utilizados em pós-emergência da cultura da soja sobre o milheto cultivado em sucessão. O experimento foi realizado em Latossolo Vermelho distroférrico de textura argilosa em região de cerrado. Os herbicidas chlorimuron-ethyl (0,015 kg ha-1), imazethapyr (0,060 kg ha-1), imazethapyr (0,100 kg ha-1) e fomesafen (0,250 kg ha-1) foram utilizados em pós-emergência do cultivar de soja Msoy-6101. Utilizou-se o delineamento de blocos casualizados, com quatro repetições, em esquema de parcelas subdivididas (5 x 4). Nas subparcelas, realizou-se a semeadura do milheto (híbrido ADR-7010) em quatro períodos, correspondendo a 0, 40, 80 e 120 dias após a aplicação dos herbicidas (DAA). Durante a condução do ensaio, avaliou-se a intoxicação da cultura aos 7 e 28 dias após a emergência, o estande, a altura e a matéria seca da parte aérea das plantas de milheto. Ao final do ciclo da cultura, determinou-se o rendimento de grãos. O imazethapyr (0,060 kg ha-1) e chlorimuron-ethyl (0,015 kg ha-1) não alteraram significativamente o rendimento da cultura do milheto em semeaduras posteriores a 80 DAA. Para fomesafen, o intervalo mínimo de segurança entre a aplicação e a semeadura do milheto foi de 100 dias. Por outro lado, maior persistência foi observada para imazethapyr na dose 0,100 kg ha-1, chegando a 120 dias de bioatividade sobre o milheto, que teve seu rendimento de grãos alterando mesmo quando semeado durante esse período.
Resumo:
No Brasil, a maior parte dos cultivos de algodão encontra-se em regiões de cerrado dos Estados do Mato Grosso e Bahia, em áreas que naturalmente são constituídas de solos ácidos. Objetivou-se neste trabalho estudar a influência da acidez do solo sobre a persistência dos herbicidas trifloxysulfuron-sodium e pyrithiobac-sodium, utilizando um bioindicador como técnica de detecção. Foram conduzidos simultaneamente quatro experimentos: dois com o herbicida trifloxysulfuron-sodium (7,5 e 15 g ha-1) e dois com o pyrithiobac-sodium (70 e 140 g ha-1). Em todos os tratamentos foi utilizado delineamento experimental inteiramente casualizado, com quatro repetições, em esquema fatorial (3x8+3). Os fatores estudados foram três tipos de solo (com níveis de pH 4,2, 4,9 e 5,5) e oito épocas de semeadura da espécie bioindicadora (0, 30, 60, 90, 120, 150, 180 e 210 DAA), além de três testemunhas sem aplicação do herbicida. A persistência do trifloxysulfuron-sodium na dose de 7,5 g ha-1 não foi influenciada pelos valores de pH. No entanto, na dose de 15 g ha-1 a maior persistência da atividade biológica foi verificada no solo com maior pH. Quando o pyrithiobac-sodium foi aplicado no solo com menor pH, nas doses de 70 e 140 g ha-1, o tempo necessário foi maior para que ocorresse redução da persistência. Contudo, aos 210 DAA não foram observadas diferenças na persistência do pyrithiobac-sodium (70 g ha-1) entre diversos valores de pH. Todavia, na dose de 140 g ha-1 do pyrithiobac-sodium, o solo com maior pH apresentou a maior persistência desse herbicida.
Resumo:
Avaliou-se neste trabalho o crescimento de plantas de café cultivadas em um Latossolo Vermelho-Amarelo, com diferentes valores de pH e contaminado com resíduos de picloram. O experimento foi instalado em esquema fatorial (2 x 9), sendo o primeiro fator dois tipos de solo (Latossolo Vermelho-Amarelo pH 4,4 e pH 6,2) e o segundo, nove doses de picloram (0, 20, 40, 60, 80, 100, 120, 140 e 160 g ha¹ ), no delineamento de blocos casualizados, com quatro repetições. Aos 60 e 120 dias após aplicação do herbicida (DAP), procedeu-se à avaliação visual de intoxicação das plantas, área foliar, pelo método não destrutivo, do diâmetro do caule, por paquímetro, e da altura das plantas, bem como à contagem do número de folhas completamente expandidas. Aos 120 DAP, fez-se a determinação da massa da matéria seca da parte aérea, do caule e das raízes, além do comprimento das raízes e volume radicular. Concluiu-se que plantas de café recém-transplantadas em solos com resíduos do picloram têm redução no seu crescimento, o que pode ter reflexo na futura produtividade da cultura. Caso sejam feitas operações visando ao aumento do pH desses solos, aumenta-se o risco da ocorrência de carryover.
Resumo:
Nowadays advanced simulation technologies of semiconductor devices occupies an important place in microelectronics production process. Simulation helps to understand devices internal processes physics, detect new effects and find directions for optimization. Computer calculation reduces manufacturing costs and time. Modern simulation suits such as Silcaco TCAD allow simulating not only individual semiconductor structures, but also these structures in the circuit. For that purpose TCAD include MixedMode tool. That tool can simulate circuits using compact circuit models including semiconductor structures with their physical models. In this work, MixedMode is used for simulating transient current technique setup, which include detector and supporting electrical circuit. This technique was developed by RD39 collaboration project for investigation radiation detectors radiation hard properties.
Resumo:
This doctoral thesis introduces an improved control principle for active du/dt output filtering in variable-speed AC drives, together with performance comparisons with previous filtering methods. The effects of power semiconductor nonlinearities on the output filtering performance are investigated. The nonlinearities include the timing deviation and the voltage pulse waveform distortion in the variable-speed AC drive output bridge. Active du/dt output filtering (ADUDT) is a method to mitigate motor overvoltages in variable-speed AC drives with long motor cables. It is a quite recent addition to the du/dt reduction methods available. This thesis improves on the existing control method for the filter, and concentrates on the lowvoltage (below 1 kV AC) two-level voltage-source inverter implementation of the method. The ADUDT uses narrow voltage pulses having a duration in the order of a microsecond from an IGBT (insulated gate bipolar transistor) inverter to control the output voltage of a tuned LC filter circuit. The filter output voltage has thus increased slope transition times at the rising and falling edges, with an opportunity of no overshoot. The effect of the longer slope transition times is a reduction in the du/dt of the voltage fed to the motor cable. Lower du/dt values result in a reduction in the overvoltage effects on the motor terminals. Compared with traditional output filtering methods to accomplish this task, the active du/dt filtering provides lower inductance values and a smaller physical size of the filter itself. The filter circuit weight can also be reduced. However, the power semiconductor nonlinearities skew the filter control pulse pattern, resulting in control deviation. This deviation introduces unwanted overshoot and resonance in the filter. The controlmethod proposed in this thesis is able to directly compensate for the dead time-induced zero-current clamping (ZCC) effect in the pulse pattern. It gives more flexibility to the pattern structure, which could help in the timing deviation compensation design. Previous studies have shown that when a motor load current flows in the filter circuit and the inverter, the phase leg blanking times distort the voltage pulse sequence fed to the filter input. These blanking times are caused by excessively large dead time values between the IGBT control pulses. Moreover, the various switching timing distortions, present in realworld electronics when operating with a microsecond timescale, bring additional skew to the control. Left uncompensated, this results in distortion of the filter input voltage and a filter self-induced overvoltage in the form of an overshoot. This overshoot adds to the voltage appearing at the motor terminals, thus increasing the transient voltage amplitude at the motor. This doctoral thesis investigates the magnitude of such timing deviation effects. If the motor load current is left uncompensated in the control, the filter output voltage can overshoot up to double the input voltage amplitude. IGBT nonlinearities were observed to cause a smaller overshoot, in the order of 30%. This thesis introduces an improved ADUDT control method that is able to compensate for phase leg blanking times, giving flexibility to the pulse pattern structure and dead times. The control method is still sensitive to timing deviations, and their effect is investigated. A simple approach of using a fixed delay compensation value was tried in the test setup measurements. The ADUDT method with the new control algorithm was found to work in an actual motor drive application. Judging by the simulation results, with the delay compensation, the method should ultimately enable an output voltage performance and a du/dt reduction that are free from residual overshoot effects. The proposed control algorithm is not strictly required for successful ADUDT operation: It is possible to precalculate the pulse patterns by iteration and then for instance store them into a look-up table inside the control electronics. Rather, the newly developed control method is a mathematical tool for solving the ADUDT control pulses. It does not contain the timing deviation compensation (from the logic-level command to the phase leg output voltage), and as such is not able to remove the timing deviation effects that cause error and overshoot in the filter. When the timing deviation compensation has to be tuned-in in the control pattern, the precalculated iteration method could prove simpler and equally good (or even better) compared with the mathematical solution with a separate timing compensation module. One of the key findings in this thesis is the conclusion that the correctness of the pulse pattern structure, in the sense of ZCC and predicted pulse timings, cannot be separated from the timing deviations. The usefulness of the correctly calculated pattern is reduced by the voltage edge timing errors. The doctoral thesis provides an introductory background chapter on variable-speed AC drives and the problem of motor overvoltages and takes a look at traditional solutions for overvoltage mitigation. Previous results related to the active du/dt filtering are discussed. The basic operation principle and design of the filter have been studied previously. The effect of load current in the filter and the basic idea of compensation have been presented in the past. However, there was no direct way of including the dead time in the control (except for solving the pulse pattern manually by iteration), and the magnitude of nonlinearity effects had not been investigated. The enhanced control principle with the dead time handling capability and a case study of the test setup timing deviations are the main contributions of this doctoral thesis. The simulation and experimental setup results show that the proposed control method can be used in an actual drive. Loss measurements and a comparison of active du/dt output filtering with traditional output filtering methods are also presented in the work. Two different ADUDT filter designs are included, with ferrite core and air core inductors. Other filters included in the tests were a passive du/dtfilter and a passive sine filter. The loss measurements incorporated a silicon carbide diode-equipped IGBT module, and the results show lower losses with these new device technologies. The new control principle was measured in a 43 A load current motor drive system and was able to bring the filter output peak voltage from 980 V (the previous control principle) down to 680 V in a 540 V average DC link voltage variable-speed drive. A 200 m motor cable was used, and the filter losses for the active du/dt methods were 111W–126 W versus 184 W for the passive du/dt. In terms of inverter and filter losses, the active du/dt filtering method had a 1.82-fold increase in losses compared with an all-passive traditional du/dt output filter. The filter mass with the active du/dt method was 17% (2.4 kg, air-core inductors) compared with 14 kg of the passive du/dt method filter. Silicon carbide freewheeling diodes were found to reduce the inverter losses in the active du/dt filtering by 18% compared with the same IGBT module with silicon diodes. For a 200 m cable length, the average peak voltage at the motor terminals was 1050 V with no filter, 960 V for the all-passive du/dt filter, and 700 V for the active du/dt filtering applying the new control principle.
Resumo:
Avaliou-se a eficiência de herbicidas na cultura do feijão e a possível ação residual desses produtos sobre as culturas de sorgo e de milho cultivadas em sucessão. O experimento foi realizado em campo e em casa de vegetação, avaliando-se os seguintes tratamentos: fomesafen (250 g L-1) e a mistura comercial de bentazon e imazamox (600 g L‑1 + 28 g L-1) nas doses de 25, 50, 75 e 100% da dose recomendada dos respectivos produtos comerciais, bem como a mistura em tanque desses herbicidas nas proporções de 75 + 25, 50 + 50 e 25 + 0,75%, além de duas testemunhas: uma capinada e outra sem capina. O fomesafen na dose de 250 g ha-1 proporcionou boa produtividade de feijão, porém prejudicou o crescimento de plantas de sorgo nas amostras de solo coletadas até 183 dias após a aplicação (DAA), indicando grande persistência do herbicida. No solo coletado aos 153 DAA, observou-se intoxicação nas plantas de milho, mas não houve influência no acúmulo de matéria seca da parte aérea nem na produção de grãos. A mistura pronta de bentazon e imazamox não foi eficiente no controle de plantas daninhas até a colheita do feijão. Contudo, quando a essa mistura adicionou-se o fomesafen, houve redução da dose do fomesafen em 75%, com ótimo controle de plantas daninhas e fácil condição de colheita do feijão, além de menor risco de carryover em plantas de sorgo e de milho. A persistência do fomesafen no solo não foi alterada com a mistura em tanque de bentazon e imazamox.
Resumo:
The study of the dynamics of a herbicide in the soil focus on the interactions with environmental components to obtain agronomic efficiency, ensuring selectivity to the culture and risk reduction of environmental impact. This study evaluated the sorption process of fomesafen in the Brazilian soils Ultisol, Cambisol, and Organosol. Besides soil, washed sand was used as an inert material for determination of the sorption ratio of fomesafen in the soil. The bioassay method was applied, using Sorghum vulgare plants as bio-indicator of herbicide presence. Plant poisoning evaluation and harvest for dry matter determination were carried out 21 days after sorghum sowing. To calculate C50, the nonlinear log-logistic model was applied and sorption ratios of the herbicide were obtained in different soils. The decreasing sorption ratio of formesafen in the soils was: Organosol > Ultisol > Cambisol. It was concluded that the contents of organic matter and clay in the soils were the attributes that most influenced fomesafen sorption.
Resumo:
Alguns herbicidas têm persistência longa no solo, o que pode levar à intoxicação de culturas sucessoras (carryover), plantadas em rotação. Objetivou-se com este trabalho avaliar a persistência do herbicida fomesafen em Argissolo Vermelho-Amarelo cultivado com feijão nos sistemas de plantio direto e convencional, caracterizando dois experimentos distintos. O delineamento utilizado foi o de blocos casualizados com quatro repetições, arranjados em parcelas subdivididas, em que as parcelas representavam as doses do herbicida (0,0, 125, 250 e 500 g ha-1) e as subparcelas, as épocas de coleta de solo (15, 30, 45, 60, 75, 90, 105, 120, 135 e 150 dias após a aplicação dos herbicidas). As amostras de solo foram coletadas de 15 em 15 dias, nas entrelinhas centrais das parcelas, e transferidas para vasos plásticos de 280 cm³, onde se semeou o sorgo como indicador biológico da presença de fomesafen. Aos 21 dias após a emergência, avaliou-se a intoxicação das plantas, numa escala em que 0 (zero) representava a ausência total de sintomas e 100, a morte da planta. A produtividade do feijoeiro não foi alterada pelas doses do fomesafen, não havendo diferença entre os tratamentos. Com o aumento da dose de fomesafen, o período de sua persistência nas amostras de solo foi maior. A persistência do fomesafen no solo varia em função do sistema de plantio e da dose aplicada; o intervalo de segurança após sua aplicação em culturas sensíveis é menor quando se pratica o plantio direto.
Resumo:
Imidazolinone herbicides present physicochemical characteristics that allow them to persist longer in environment, with increased chances of soil and water contamination, as well as carryover effects on subsequent crops. Phytoremediation is shown as a promising technique to decontaminate soils polluted by herbicides. The aim of this study was to assess the potential of some winter grown species in removing residuals from soils contaminated with imazethapyr + imazapic and imazapic + imazapyr, using pre-emergence to control weeds in summer grown rice fields. The experiment was conducted in a completely randomized design, with four replications. All species were subjected to herbicide application at different doses. Imazethapyr + imazapic and imazapyr + imazapic were applied at doses of 0.0, 1.0 and 2.0 L ha-1, and 0.0, 140 and 280 g ha-1, respectively, in pre-emergence of the species. Brassica napus and Festuca arundinaceae are not tolerant to herbicides, with 100% of phytotoxicity (plant death) for all doses assessed. The herbicide imazapyr + imazapic proved to be less selective, causing the highest phytotoxicity in the species tested. The most tolerant species to the herbicides was Vicia sativa, which may be the most suitable one for phytoremediation programs in areas contaminated with imazethapyr + imazapic and imazapyr + imazapic.
Resumo:
Two experiments were carried out to evaluate soil persistence of chlorimuron-ethyl and metsulfuron-methyl and phytotoxicity to corn seeded as a succeeding crop. One experiment was conducted with chlorimuron-ethyl applied at 20 g ha-1, and one with metsulfuron-methyl applied at 3.96 g ha-1. Treatments were arranged in a factorial design with two types of soil (sandy and clay), three irrigation regimes (daily, weekly and no irrigation) and four application timings (90, 60 and 30 days before corn seeding, as well as untreated plots). Soil persistence of the herbicides was influenced by water availability, molecule water solubility (leaching potential) and application timings prior to corn seeding. In sandy soil, with adequate water availability, leaching probably had the greatest influence, reducing the persistence of the products, and consequently allowing less time between product application and corn seeding. In clay soil, microbial degradation was probably more important, because it was assumed that the lesser time available for microorganism activity, the lesser the damage was observed for corn, as long as the crop had enough water availability. Metsulfuron-methyl was the least phytotoxic herbicide, possibly as a result of the properties of its molecule and its higher leaching potential.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.
Resumo:
The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.
Resumo:
Fluid particle breakup and coalescence are important phenomena in a number of industrial flow systems. This study deals with a gas-liquid bubbly flow in one wastewater cleaning application. Three-dimensional geometric model of a dispersion water system was created in ANSYS CFD meshing software. Then, numerical study of the system was carried out by means of unsteady simulations performed in ANSYS FLUENT CFD software. Single-phase water flow case was setup to calculate the entire flow field using the RNG k-epsilon turbulence model based on the Reynolds-averaged Navier-Stokes (RANS) equations. Bubbly flow case was based on a computational fluid dynamics - population balance model (CFD-PBM) coupled approach. Bubble breakup and coalescence were considered to determine the evolution of the bubble size distribution. Obtained results are considered as steps toward optimization of the cleaning process and will be analyzed in order to make the process more efficient.