838 resultados para sender-receiver games
Resumo:
Today, pupils at the age of 15 have spent their entire life surrounded by and interacting with diverse forms of computers. It is a routine part of their day-to-day life and by now computer-literacy is common at very early age. Over the past five years, technology for teens has become predominantly mobile and ubiquitous within every aspect of their lives. To them, being online is an implicitness. In Germany, 88% of youth aged between 12-19 years own a smartphone and about 20% use the Internet via tablets. Meanwhile, more and more young learners bring their devices into the classroom and pupils increasingly demand for innovative and motivating learning scenarios that strongly respond to their habits of using media. With this development, a shift of paradigm is slowly under way with regard to the use of mobile technology in education. By now, a large body of literature exists, that reports concepts, use-cases and practical studies for effectively using technology in education. Within this field, a steadily growing body of research has developed that especially examines the use of digital games as instructional strategy. The core concern of this thesis is the design of mobile games for learning. The conditions and requirements that are vital in order to make mobile games suitable and effective for learning environments are investigated. The base for exploration is the pattern approach as an established form of templates that provide solutions for recurrent problems. Building on this acknowledged form of exchanging and re-using knowledge, patterns for game design are used to classify the many gameplay rules and mechanisms in existence. This research draws upon pattern descriptions to analyze learning game concepts and to abstract possible relationships between gameplay patterns and learning outcomes. The linkages that surface are the starting bases for a series of game design concepts and their implementations are subsequently evaluated with regard to learning outcomes. The findings and resulting knowledge from this research is made accessible by way of implications and recommendations for future design decisions.
Resumo:
The long-term preservation of complex works such as video games comes with many challenges. Emulation, currently the most adequate preservation strategy for video games, requires several acts that are technically possible, but closely governed and restricted by copyright law and technical protection measures. Without prior authorisation from the rightsholder(s), it is therefore difficult to legally emulate these works. However, games often have several rightsholders that are in some cases near impossible to identify or locate – particularly with regard to older games. This paper therefore focuses on these so-called orphan video games and examines whether (and to what extent) they are covered by the directive on certain permitted uses of orphan works 2012/28/EU (Orphan Works Directive). As complex works with software and audiovisual components, it is difficult to classify video games in their entirety. The Orphan Works Directive, however, only covers certain categories of works. This paper therefore analyses 1) whether video games in their entirety can be considered types of works that fall under the directive, i.e. audiovisual or cinematographic works, and 2) whether the provisions of the orphan work exception are suitable for the specifics of these complex, “multimedia” works.
Resumo:
The ActiGraph accelerometer is commonly used to measure physical activity in children. Count cut-off points are needed when using accelerometer data to determine the time a person spent in moderate or vigorous physical activity. For the GT3X accelerometer no cut-off points for young children have been published yet. The aim of the current study was thus to develop and validate count cut-off points for young children. Thirty-two children aged 5 to 9 years performed four locomotor and four play activities. Activity classification into the light-, moderate- or vigorous-intensity category was based on energy expenditure measurements with indirect calorimetry. Vertical axis as well as vector magnitude cut-off points were determined through receiver operating characteristic curve analyses with the data of two thirds of the study group and validated with the data of the remaining third. The vertical axis cut-off points were 133 counts per 5 sec for moderate to vigorous physical activity (MVPA), 193 counts for vigorous activity (VPA) corresponding to a metabolic threshold of 5 MET and 233 for VPA corresponding to 6 MET. The vector magnitude cut-off points were 246 counts per 5 sec for MVPA, 316 counts for VPA - 5 MET and 381 counts for VPA - 6 MET. When validated, the current cut-off points generally showed high recognition rates for each category, high sensitivity and specificity values and moderate agreement in terms of the Kappa statistic. These results were similar for vertical axis and vector magnitude cut-off points. The current cut-off points adequately reflect MVPA and VPA in young children. Cut-off points based on vector magnitude counts did not appear to reflect the intensity categories better than cut-off points based on vertical axis counts alone.
Resumo:
This paper examines the mitigating effect of social accounts on retaliatory behavior in a miniultimatum game setting. Results from games with 108 German high school students support the hypothesis that an ex ante informational and sensitive message can decrease an individuals’ negative perception of an unfair offer and increase the acceptance of the outcome. Furthermore, the moderating effect of gender on retaliatory behavior is investigated. We show that an informational and sensitive message makes more of a difference for women in accepting unfair distributions than it does for men.
Resumo:
Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.
Resumo:
We study state-based video communication where a client simultaneously informs the server about the presence status of various packets in its buffer. In sender-driven transmission, the client periodically sends to the server a single acknowledgement packet that provides information about all packets that have arrived at the client by the time the acknowledgment is sent. In receiver-driven streaming, the client periodically sends to the server a single request packet that comprises a transmission schedule for sending missing data to the client over a horizon of time. We develop a comprehensive optimization framework that enables computing packet transmission decisions that maximize the end-to-end video quality for the given bandwidth resources, in both prospective scenarios. The core step of the optimization comprises computing the probability that a single packet will be communicated in error as a function of the expected transmission redundancy (or cost) used to communicate the packet. Through comprehensive simulation experiments, we carefully examine the performance advances that our framework enables relative to state-of-the-art scheduling systems that employ regular acknowledgement or request packets. Consistent gains in video quality of up to 2B are demonstrated across a variety of content types. We show that there is a direct analogy between the error-cost efficiency of streaming a single packet and the overall rate-distortion performance of streaming the whole content. In the case of sender-driven transmission, we develop an effective modeling approach that accurately characterizes the end-to-end performance as a function of the packet loss rate on the backward channel and the source encoding characteristics.
Resumo:
A non-parametric method was developed and tested to compare the partial areas under two correlated Receiver Operating Characteristic curves. Based on the theory of generalized U-statistics the mathematical formulas have been derived for computing ROC area, and the variance and covariance between the portions of two ROC curves. A practical SAS application also has been developed to facilitate the calculations. The accuracy of the non-parametric method was evaluated by comparing it to other methods. By applying our method to the data from a published ROC analysis of CT image, our results are very close to theirs. A hypothetical example was used to demonstrate the effects of two crossed ROC curves. The two ROC areas are the same. However each portion of the area between two ROC curves were found to be significantly different by the partial ROC curve analysis. For computation of ROC curves with large scales, such as a logistic regression model, we applied our method to the breast cancer study with Medicare claims data. It yielded the same ROC area computation as the SAS Logistic procedure. Our method also provides an alternative to the global summary of ROC area comparison by directly comparing the true-positive rates for two regression models and by determining the range of false-positive values where the models differ. ^
Resumo:
Objectives Despite many reports on best practises regarding onsite psychological services, little research has attempted to systematically explore the frequency, issues, nature and client groups of onsite sport psychology consultancy at the Olympic Games. The present paper will fill this gap through a systematic analysis of the sport psychology consultancy of the Swiss team for the Olympic Games of 2006 in Turin, 2008 in Beijing and 2010 in Vancouver. Design Descriptive research design. Methods The day reports of the official sport psychologist were analysed. Intervention issues were labelled using categories derived from previous research and divided into the following four intervention-issue dimensions: “general performance”, “specific Olympic performance”, “organisational” and “personal” issues. Data were analysed using descriptive statistics, chi square statistics and odds ratios. Results Across the Olympic Games, between 11% and 25% of the Swiss delegation used the sport psychology services. On average, the sport psychologist provided between 2.1 and 4.6 interventions per day. Around 50% of the interventions were informal interventions. Around 30% of the clients were coaches. The most commonly addressed issues were performance related. An association was observed between previous collaboration, intervention likelihood and intervention theme. Conclusions Sport psychologists working at the Olympic Games are fully engaged with daily interventions and should have developed ideally long-term relationships with clients to truly help athletes with general performance issues. Critical incidents, working with coaches, brief contact interventions and team conflicts are specific features of the onsite consultancy. Practitioners should be trained to deal with these sorts of challenges.
Resumo:
Social interaction is a core aspect of human life that affects individuals’ physical and mental health. Social interaction usually leads to mutual engagement in diverse areas of mental, emotional, physiological and physical activity involving both interacting persons and subsequently impacting the outcome of interactions. A common approach to the analysis of social interaction is the study of the verbal content transmitted between sender and receiver. However, additional important processes and dynamics are occurring in other domains too, for example in the area of nonverbal behaviour: In a series of studies, we have looked at nonverbal synchrony – the coordination of two persons’ movement patterns – and it‘s association with relationship quality and with the outcome of interactions. Using a computer-based algorithm (Motion Energy Analysis, MEA: Ramseyer & Tschacher, 2011), which automatically quantifies a person‘s body-movement, we were able to objectively calculate nonverbal synchrony in a large number of dyads interacting in various settings. In a first step, we showed that the phenomenon of nonverbal synchrony exists at a level that is significantly higher than expected by chance. In a second step, we ascertained that across different settings – including patient-therapist dyads and healthy dyads – more synchronized movement was associated with better relationship quality and better interactional outcomes. The quality of a relationship is thus embodied by the synchronized movement patterns emerging between partners. Our studies suggest that embodied cognition is a valuable approach to research in social interaction, providing important clues for an improved understanding of interaction dynamics.
Resumo:
Games that simulate complex realities to be dealt with in teams are an effective tool for fostering interactive learning processes. they link different levels of decision-making in the household, community and societal contexts. Negotiation and harmonisation of different perceptions and interests, be it within or between different households, form the basis of a common strategy for sustainable development.