974 resultados para rotating disk flow
Resumo:
A model has been developed to track the flow of cane constituents through the milling process. While previous models have tracked the flow of fibre, brix and water through the process, this model tracks the soluble and insoluble solid cane components using modelling theory and experiment data, assisting in further understanding the flow of constituents into mixed juice and final bagasse. The work provided an opportunity to understand the factors which affect the distribution of the cane constituents in juice and bagasse. Application of the model should lead to improvements in the overall performance of the milling train.
Resumo:
This paper presents an analytical model to study the effect of stiffening ribs on vibration transmission between two rectangular plates coupled at right angle. Interesting wave attenuation patterns were observed by placing the stiffening rib either on the source or on the receiving plate. The result can be used to improve the understanding of vibration and for vibration control of more complex structures such as transformer tanks and machine covers.
Resumo:
Typical flow fields in a stormwater gross pollutant trap (GPT) with blocked retaining screens were experimentally captured and visualised. Particle image velocimetry (PIV) software was used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. A technique was developed to apply the Image Based Flow Visualization (IBFV) algorithm to the experimental raw dataset generated by the PIV software. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding gross pollutant capture and retention within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate specific areas and identify the flow features within the GPT.
Resumo:
This paper is concerned with recent advances in the development of near wall-normal-free Reynolds-stress models, whose single point closure formulation, based on the inhomogeneity direction concept, is completely independent of the distance from the wall, and of the normal to the wall direction. In the present approach the direction of the inhomogeneity unit vector is decoupled from the coefficient functions of the inhomogeneous terms. A study of the relative influence of the particular closures used for the rapid redistribution terms and for the turbulent diffusion is undertaken, through comparison with measurements, and with a baseline Reynolds-stress model (RSM) using geometric wall normals. It is shown that wall-normal-free rsms can be reformulated as a projection on a tensorial basis that includes the inhomogeneity direction unit vector, suggesting that the theory of the redistribution tensor closure should be revised by taking into account inhomogeneity effects in the tensorial integrity basis used for its representation.
Resumo:
Natural convection thermal boundary layer adjacent to the heated inclined wall of a right angled triangle with an adiabatic fin attached to that surface is investigated by numerical simulations. The finite volume based unsteady numerical model is adopted for the simulation. It is revealed from the numerical results that the development of the boundary layer along the inclined surface is characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady stage. These three stages can be clearly identified from the numerical simulations. Moreover, in presence of adiabatic fin, the thermal boundary layer adjacent to the inclined wall breaks initially. However, it is reattached with the downstream boundary layer next to the fin. More attention has been given to the boundary layer development near the fin area.
Resumo:
To fumigate grain stored in a silo, phosphine gas is distributed by a combination of diffusion and fan-forced advection. This initial study of the problem mainly focuses on the advection, numerically modelled as fluid flow in a porous medium. We find satisfactory agreement between the flow predictions of two Computational Fluid Dynamics packages, Comsol and Fluent. The flow predictions demonstrate that the highest velocity (>0.1 m/s) occurs less than 0.2m from the inlet and reduces drastically over one metre of silo height, with the flow elsewhere less than 0.002 m/s or 1% of the velocity injection. The flow predictions are examined to identify silo regions where phosphine dosage levels are likely to be too low for effective grain fumigation.
Resumo:
Numerical study is carried out using large eddy simulation to study the heat and toxic gases released from fires in real road tunnels. Due to disasters about tunnel fires in previous decade, it attracts increasing attention of researchers to create safe and reliable ventilation designs. In this research, a real tunnel with 10 MW fire (which approximately equals to the heat output speed of a burning bus) at the middle of tunnel is simulated using FDS (Fire Dynamic Simulator) for different ventilation velocities. Carbone monoxide concentration and temperature vertical profiles are shown for various locations to explore the flow field. It is found that, with the increase of the longitudinal ventilation velocity, the vertical profile gradients of CO concentration and smoke temperature were shown to be both reduced. However, a relatively large longitudinal ventilation velocity leads to a high similarity between the vertical profile of CO volume concentration and that of temperature rise.
Resumo:
The problem of MHD natural convection boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed in the presence of strong cross magnetic field with radiative heat transfer. In the analysis radiative heat flux is considered by adopting optically thick radiation limit. Attempt is made to obtain the solutions valid for liquid metals by taking Pr≪1. Boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation (SFF) and primitive variable formulation (PVF). Non-similar equations obtained from SFF are then simulated by implicit finite difference (Keller-box) method whereas parabolic partial differential equations obtained from PVF are integrated numerically by hiring direct finite difference method over the entire range of local Hartmann parameter, $xi$ . Further, asymptotic solutions are also obtained for large and small values of local Hartmann parameter $xi$ . A favorable agreement is found between the results for small, large and all values of $xi$ . Numerical results are also demonstrated graphically by showing the effect of various physical parameters on shear stress, rate of heat transfer, velocity and temperature.
Resumo:
In this study, natural convection boundary layer flow of thermally radiating fluid along a heated vertical wavy surface is analyzed. Here, the radiative component of heat flux emulates the surface temperature. Governing equations are reduced to dimensionless form, subject to the appropriate transformation. Resulting dimensionless equations are transformed to a set of parabolic partial differential equations by using primitive variable formulation, which are then integrated numerically via iterative finite difference scheme. Emphasis has been given to low Prandtl number fluid. The numerical results obtained for the physical parameters, such as, surface radiation parameter, R, and radiative length parameter, ξ, are discussed in terms of local skin friction and Nusselt number coefficients. Comprehensive interpretation of velocity distribution is also given in the form of streamlines.
Resumo:
The effect of conduction-convection-radiation on natural convection flow of Newtonian optically thick gray fluid, confined in a non-Darcian porous media square cavity is numerically studied. For the gray fluid consideration is given to Rosseland diffusion approximation. Further assuming that (i) the temperature of the left vertical wall is varying linearly with height, (ii) cooled right vertical and top walls and (iii) the bottom wall is uniformly-heated. The governing equations are solved using the Alternate Direct Implicit method together with the Successive Over Relaxation technique. The investigation of the effect of governing parameters namely the Forschheimer resistance (Γ), the Planck constant (Rd), and the temperature difference (Δ), on flow pattern and heat transfer characteristics has been carried out. It was seen that the reduction of flow and heat transfer occurs as the Forschheimer resistance is increased. On the other hand both the strength of flow and heat transfer increases as the temperature ratio, Δ, is increased.
Resumo:
This chapter represents the analytical solution of two-dimensional linear stretching sheet problem involving a non-Newtonian liquid and suction by (a) invoking the boundary layer approximation and (b) using this result to solve the stretching sheet problem without using boundary layer approximation. The basic boundary layer equations for momentum, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The results reveal a new analytical procedure for solving the boundary layer equations arising in a linear stretching sheet problem involving a non-Newtonian liquid (Walters’ liquid B). The present study throws light on the analytical solution of a class of boundary layer equations arising in the stretching sheet problem.
Resumo:
The steady problem of free surface flow due to a submerged line source is revisited for the case in which the fluid depth is finite and there is a stagnation point on the free surface directly above the source. Both the strength of the source and the fluid speed in the far field are measured by a dimensionless parameter, the Froude number. By applying techniques in exponential asymptotics, it is shown that there is a train of periodic waves on the surface of the fluid with an amplitude which is exponentially small in the limit that the Froude number vanishes. This study clarifies that periodic waves do form for flows due to a source, contrary to a suggestion by Chapman & Vanden-Broeck (2006, J. Fluid Mech., 567, 299--326). The exponentially small nature of the waves means they appear beyond all orders of the original power series expansion; this result explains why attempts at describing these flows using a finite number of terms in an algebraic power series incorrectly predict a flat free surface in the far field.