946 resultados para retinol binding protein
Resumo:
The retinoid X receptor (RXR) participates in a wide array of hormonal signaling pathways, either as a homodimer or as a heterodimer, with other members of the steroid and thyroid hormone receptor superfamily. In this report the ligand-dependent transactivation function of RXR has been characterized, and the ability of RXR to interact with components of the basal transcription machinery has been examined. In vivo and in vitro experiments indicate the RXR ligand-binding domain makes a direct, specific, and ligand-dependent contact with a highly conserved region of the TATA-binding protein. The ability of mutations that reduce ligand-dependent transcription by RXR to disrupt the RXR-TATA-binding protein interaction in vivo and in vitro suggests that RXR makes direct contact with the basal transcription machinery to achieve activation.
Resumo:
The herpes simplex virus 1 (HSV-1) genome encodes seven polypeptides that are required for its replication. These include a heterodimeric DNA polymerase, a single-strand-DNA-binding protein, a heterotrimeric helicase/primase, and a protein (UL9 protein) that binds specifically to an HSV-1 origin of replication (oris). We demonstrate here that UL9 protein interacts specifically with the 180-kDa catalytic subunit of the cellular DNA polymerase alpha-primase. This interaction can be detected by immunoprecipitation with antibodies directed against either of these proteins, by gel mobility shift of an oris-UL9 protein complex, and by stimulation of DNA polymerase activity by the UL9 protein. These findings suggest that enzymes required for cellular DNA replication also participate in HSV-1 DNA replication.
Resumo:
Frequenin was originally identified in Drosophila melanogaster as a Ca(2+)-binding protein facilitating transmitter release at the neuromuscular junction. We have cloned the Xenopus frequenin (Xfreq) by PCR using degenerate primers combined with low-stringency hybridization. The deduced protein has 70% identity with Drosophila frequenin and about 38-58% identity with other Ca(2+)-binding proteins. The most prominent features are the four EF-hands, Ca(2+)-binding motifs. Xfreq mRNA is abundant in the brain and virtually nondetectable from adult muscle. Western blot analysis indicated that Xfreq is highly concentrated in the adult brain and is absent from nonneural tissues such as heart and kidney. During development, the expression of the protein correlated well with the maturation of neuromuscular synapses. To determine the function of Xfreq at the developing neuromuscular junction, the recombinant protein was introduced into Xenopus embryonic spinal neurons by early blastomere injection. Synapses made by spinal neurons containing exogenous Xfreq exhibited a much higher synaptic efficacy. These results provide direct evidence that frequenin enhances transmitter release at the vertebrate neuromuscular synapse and suggest its potential role in synaptic development and plasticity.
Resumo:
YPT/rab proteins are ras-like small GTP-binding proteins that serve as key regulators of vesicular transport. The mRNA levels of two YPT/rab genes in pea plants are repressed by light, with the process mediated by phytochrome. Here, we examined the mRNA expression and the location of the two proteins, pra2- and pra3-encoded proteins, using monoclonal antibodies. The pra2 and pra3 mRNA levels were highest in the stems of dark-grown seedlings. The corresponding proteins were found in the cytosol and the membranes of the stems. Most of the pra2 protein was in the growing internodes, especially in the growing region, but the pra3 protein was widespread. These results suggest that the pra2 protein is important for vesicular transport in stems, possibly contributing to stem growth in the dark, and that the pra3 protein is important for general vesicular transport. The amounts of pra2 and pra3 proteins decreased with illumination. The decrease in these proteins may be related to the phytochrome-dependent inhibition of stem growth that occurs in etiolated pea seedlings.
Resumo:
Feedback regulation of transcription from the low density lipoprotein (LDL) receptor gene is fundamentally important in the maintenance of intracellular sterol balance. The region of the LDL receptor promoter responsible for normal sterol regulation contains adjacent binding sites for the ubiquitous transcription factor Sp1 and the cholesterol-sensitive sterol regulatory element-binding proteins (SREBPs). Interestingly, both are essential for normal sterolmediated regulation of the promoter. The cooperation by Sp1 and SREBP-1 occurs at two steps in the activation process. SREBP-1 stimulates the binding of Sp1 to its adjacent recognition site in the promoter followed by enhanced stimulation of transcription after both proteins are bound to DNA. In the present report, we have defined the protein domains of Sp1 that are required for both synergistic DNA binding and transcriptional activation. The major activation domains of Sp1 that have previously been shown to be essential to activation of promoters containing multiple Sp1 sites are required for activation of the LDL receptor promoter. Additionally, the C domain is also crucial. This slightly acidic approximately 120-amino acid region is not required for efficient synergistic activation by multiple Sp1 sites or in combination with other recently characterized transcriptional regulators. We also show that Sp1 domain C is essential for full, enhanced DNA binding by SREBP-1. Taken together with other recent studies on the role of Sp1 in promoter activation, the current experiments suggest a unique combinatorial mechanism for promoter activation by two distinct transcription factors that are both essential to intracellular cholesterol homeostasis.
Resumo:
mac25, the subject of this report, was selected by the differential display of mRNA method in a search for genes overexpressed in senescent human mammary epithelial cells. mac25 had previously been cloned as a discrete gene, preferentially expressed in normal, leptomeningial cells compared with meningioma tumors. mac25 is another member of the insulin growth factor-binding protein (IGFBP) family. Insulin-like growth factors are potent mitogens for mammary epithelial cells, and the IGFBPs have been shown to modulate this mitogenic activity. We report here that mac25, unlike most IGFBPs, is down-regulated at the transcription level in mammary carcinoma cell lines, suggesting a tumor-suppressor role. The gene was mapped to chromosome 4q12. We found that mac25 accumulates in senescent cells and is up-regulated in normal, growing mammary epithelial cells by all-trans-retinoic acid or the synthetic retinoid fenretinide. These findings suggest that mac25 may be a downstream effector of retinoid chemoprevention in breast epithelial cells and that its tumor-suppressive role may involve a senescence pathway.
Resumo:
Plakoglobin interacts with both classical and desmosomal cadherins. It is closely related to Drosophila aramadillo (arm) gene product; arm acts in the wingless (wg)-signaling pathway to establish segment polarity. In Xenopus, homologs of wg--i.e., wnts, can produce anterior axis duplications by inducing dorsal mesoderm. Studies in Drosophila suggest that wnt acts by increasing the level of cytoplasmic armadillo protein (arm). To test whether simply increasing the level of plakoglobin mimics the effects of exogenous wnts in Xenopus, we injected fertilized eggs with RNA encoding an epitope-tagged form of plakoglobin; this induced both early radial gastrulation and anterior axis duplication. Exogenous plakoglobin accumulates in the nuclei of embryonic cells. Plakoglobin binds to the tail domain of the desmosomal cadherin desmoglein 1. When RNA encoding the tail domain of desmoglein was coinjected with plakoglobin RNA, both the dorsalizing effect and nuclear accumulation of plakoglobin were suppressed. Mutational analysis indicates that the central arm repeat region of plakoglobin is sufficient to induce axis duplication and that this polypeptide accumulates in the nuclei of embryonic cells. These data show that increased plakoglobin levels can, by themselves, generate the intracellular signals involved in the specification of dorsal mesoderm.
Resumo:
The trimeric human single-stranded DNA-binding protein (HSSB; also called RP-A) plays an essential role in DNA replication, nucleotide excision repair, and homologous DNA recombination. The p34 subunit of HSSB is phosphorylated at the G1/S boundary of the cell cycle or upon exposure of cells to DNA damage-inducing agents including ionizing and UV radiation. We have previously shown that the phosphorylation of p34 is catalyzed by both cyclin-dependent kinase-cyclin A complex and DNA-dependent protein kinase. In this study, we investigated the effect of phosphorylation of p34 by these kinases on the replication and repair function of HSSB. We observed no significant difference with the unphosphorylated and phosphorylated forms of HSSB in the simian virus 40 DNA replication or nucleotide excision repair systems reconstituted with purified proteins. The phosphorylation status of the p34 subunit of HSSB was unchanged during the reactions. We suggest that the phosphorylated HSSB has no direct effect on the basic mechanism of DNA replication and nucleotide excision repair reactions in vitro, although we cannot exclude a role of p34 phosphorylation in modulating HSSB function in vivo through a yet poorly understood control pathway in the cellular response to DNA damage and replication.
Resumo:
Members of the IRF family mediate transcriptional responses to interferons (IFNs) and to virus infection. So far, proteins of this family have been studied only among mammalian species. Here we report the isolation of cDNA clones encoding two members of this family from chicken, interferon consensus sequence-binding protein (ICSBP) and IRF-1. The predicted chicken ICSBP and IRF-1 proteins show high levels of sequence similarity to their corresponding human and mouse counterparts. Sequence identities in the putative DNA-binding domains of chicken and human ICSBP and IRF-1 were 97% and 89%, respectively, whereas the C-terminal regions showed identities of 64% and 51%; sequence relationships with mouse ICSBP and IRF-1 are very similar. Chicken ICSBP was found to be expressed in several embryonic tissues, and both chicken IRF-1 and ICSBP were strongly induced in chicken fibroblasts by IFN treatment, supporting the involvement of these factors in IFN-regulated gene expression. The presence of proteins homologous to mammalian IRF family members, together with earlier observations on the occurrence of functionally homologous IFN-responsive elements in chicken and mammalian genes, highlights the conservation of transcriptional mechanisms in the IFN system, a finding that contrasts with the extensive sequence and functional divergence of the IFNs.
Resumo:
RB, the protein product of the retinoblastoma tumor-suppressor gene, regulates the activity of specific transcription factors. This regulation appears to be mediated either directly through interactions with specific transcription factors or through an alternative mechanism. Here we report that stimulation of Sp1-mediated transcription by RB is partially abrogated at the nonpermissive temperature in ts13 cells. These cells contain a temperature-sensitive mutation in the TATA-binding protein-associated factor TAFII250, first identified as the cell cycle regulatory protein CCG1. The stimulation of Sp1-mediated transcription by RB in ts13 cells at the nonpermissive temperature could be restored by the introduction of wild-type human TAFII250. Furthermore, we demonstrate that RB binds directly to hTAFII250 in vitro and in vivo. These results suggest that RB can confer transcriptional regulation and possibly cell cycle control and tumor suppression through an interaction with TFIID, in particular with TAFII250.
Resumo:
The predominant localization of the major auxin-binding protein (ABP1) of maize is within the lumen of the endoplasmic reticulum. Nevertheless, all the electrophysiological evidence supporting a receptor role for ABP1 implies that a functionally important fraction of the protein must reside at the outer face of the plasma membrane. Using methods of protoplast preparation designed to minimize proteolysis, we report the detection of ABP at the surface of maize coleoptile protoplasts by the technique of silver-enhanced immunogold viewed by epipolarization microscopy. We also show that ABP clusters following auxin treatment and that this response is temperature-dependent and auxin-specific.
Resumo:
Os microRNAs (miRNAs) são pequenos RNAs endógenos não codantes de 21-24 nucleotídeos (nt) que regulam a expressão gênica de genes-alvos. Eles estão envolvidos em diversos aspectos de desenvolvimento da planta, tanto na parte aérea, quanto no sistema radicular. Entre os miRNAs, o miRNA156 (miR156) regula a família de fatores de transcrição SQUAMOSA Promoter-Binding Protein-Like (SPL) afetando diferentes processos do desenvolvimento vegetal. Estudos recentes mostram que a via gênica miR156/SPL apresenta efeito positivo tanto no aumento da formação de raízes laterais, quanto no aumento de regeneração de brotos in vitro a partir de folhas e hipocótilos em Arabidopsis thaliana. Devido ao fato de que a origem da formação de raiz lateral e a regeneração in vitro de brotos a partir de raiz principal compartilham semelhanças anatômicas e moleculares, avaliou-se no presente estudo se a via miR156/SPL, da mesma forma que a partir de explantes aéreos, também é capaz de influenciar na regeneração de brotos in vitro a partir de explantes radiculares. Para tanto foram comparados taxa de regeneração, padrão de distribuição de auxina e citocinina, análises histológicas e histoquímicas das estruturas regeneradas em plantas com via miR156/SPL alterada, incluindo planta mutante hyl1, na qual a produção desse miRNA é severamente reduzida. Além disso, foi avaliado o padrão de expressão do miR156 e específicos genes SPL durante a regeneração de brotos in vitro a partir da raiz principal de Arabidopsis thaliana. No presente trabalho observou-se que a alteração da via gênica miR156/SPL é capaz de modular a capacidade de regeneração de brotos in vitro a partir de raiz principal de Arabidopsis thaliana e a distribuição de auxina e citocinina presente nas células e tecidos envolvidos no processo de regeneração. Plantas superexpressando o miR156 apresentaram redução no número de brotos regenerados, além de ter o plastochron reduzido quando comparado com plantas controle. Adicionalmente, plantas contento o gene SPL9 resistente à clivagem pelo miR156 (rSPL9) apresentaram severa redução na quantidade de brotos, além de terem o plastochron alongado. Interessantemente, plantas mutantes hyl1-2 e plantas rSPL10 não apresentaram regeneração de brotos ao longo da raiz principal, mas sim intensa formação de raízes laterais e protuberâncias, respectivamente, tendo essa última apresentado indícios de diferenciação celular precoce. Tomados em conjunto os dados sugerem que o miR156 apresenta importante papel no controle do processo de regeneração de brotos in vitro. Entretanto, esse efeito é mais complexo em regeneração in vitro a partir de raízes do que a partir de cotilédones ou hipocótilos.
Resumo:
Tese de mestrado, Biologia Molecular e Genética, Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
A detailed study has been carried out on the dependence of folate binding on the concentration of FBP (folate-binding protein) at pH 5.0, conditions selected to prevent complications arising from the pre-existing self-association of the acceptor. In contrast with the mandatory requirement that reversible interaction of ligand with a single acceptor site should exhibit a unique, rectangular hyperbolic binding curve, results obtained by ultrafiltration for the FBP-folate system required description in terms of (i) a sigmoidal relationship between concentrations of bound and free folate and (ii) an inverse dependence of affinity on FBP concentration. These findings have been attributed to the difficulties in determining the free ligand concentration in the FBP-folate mixtures for which reaction is essentially stoichiometric. This explanation also accounts for the similar published behaviour of the FBP-folate system at neutral pH, which had been attributed erroneously to acceptor self-association, a phenomenon incompatible with the experimental findings because of its prediction of a greater affinity for folate with increasing FBP concentration.
Resumo:
The Mechanism Underlying the development of tolerance to morphine, is still incompletely understood. Morphine binds to opioid receptors, Which in turn activates downstream second messenger cascades through heterotrimeric guanine nucleotide binding proteins (G proteins). In this paper, we show that G(z), a member of the inhibitory G protein family, plays an important role in mediating the analgesic and lethality effects of morphine after tolerance development. We blocked signaling through the G(z) second messenger cascade by genetic ablation of the alpha subunit of the G protein in mice. The Galpha(z) knockout Mouse develops significantly increased tolerance to morphine. which depends oil Galpha(z), gene dosage. Further experiments demonstrate that the enhanced morphine tolerance is not caused by pharmacokinetic and behavioural learning mechanisms. The results suggest that G(z) signaling pathways are involved ill transducing the analgesic and lethality effects of morphine following chronic morphine treatment. (C) 2004 Elsevier Ltd. All rights reserved.