902 resultados para prosthetic devices
Resumo:
This paper presents a distribution feeder simulation using VHDL-AMS, considering the standard IEEE 13 node test feeder admitted as an example. In an electronic spreadsheet all calculations are performed in order to develop the modeling in VHDL-AMS. The simulation results are compared in relation to the results from the well knowing MatLab/Simulink environment, in order to verify the feasibility of the VHDL-AMS modeling for a standard electrical distribution feeder, using the software SystemVision™. This paper aims to present the first major developments for a future Real-Time Digital Simulator applied to Electrical Power Distribution Systems. © 2012 IEEE.
Resumo:
In this work we described for the first time the construction of a 25 μL electrochemical cell from low temperature co-fired ceramic (LTCC) material and carbon screen-printed electrode applicable in portable devices. Firstly, a carbon screen-printed electrode was prepared and characterized by cyclic voltammetry and scanning electron microscopy. Afterwards carbon polymeric film and metal pastes were dropped into the LTCC cell cavities in order to determine the device electrodes, and this arrangement was also electrochemically characterized. The great advantage of this promising device is the simple construction method and its widespread applicability in reusable portable devices. © 2013 The Royal Society of Chemistry.
Resumo:
Control of cross-contamination between dental offices and prosthetic laboratories is of utmost importance to maintain the health of patients and dental office staff. The purpose of this study was to evaluate disinfection protocols, considering antimicrobial effectiveness and damage to the structures of prostheses. Solutions of 1% sodium hypochlorite, 2% chlorhexidine digluconate, 50% vinegar and sodium perborate were evaluated. Specimens were contaminated in vitro with standardized suspensions of Candida albicans, Streptococcus mutans, Escherichia coli, Staphylococcus aureus and Bacillus subtilis spores. Disinfection by immersion for 10. min was performed. Final counts of microorganisms were obtained using the plating method. Results were statistically compared by Kruskal-Wallis ANOVA and Dunn's test. The surface roughness of 40 specimens was analyzed before and after 10 disinfection cycles, and results were compared statistically using Student's t test. The solution of 50% vinegar was as effective as 1% sodium hypochlorite and 2% chlorhexidine against C. albicans, E. coli and S. mutans. The sodium perborate solution showed the lowest antimicrobial effectiveness. Superficial roughness increased after cycles in 1% sodium hypochlorite (p=0.02). Solutions of 1% sodium hypochlorite, 2% chlorhexidine and 50% vinegar were effective for the disinfection of heat-polymerized acrylic specimens. Sodium hypochlorite increased the superficial roughness. © 2013 King Saud Bin Abdulaziz University for Health Sciences.
Resumo:
Acid mine drainage (AMD) is a serious environmental problem that creates acidic solution with high Mn concentrations. The speciation of residual Mn from AMD after an active treatment involving the addition of a neutralizing agent can reliably evaluate the treatment efficiency and provide knowledge of the Mn species being inputted into the environment. The aim of this study was to evaluate the in situ lability and speciation of Mn using the diffusive gradients in thin films (DGT) technique with treated drainage water from a uranium mine (TAMD). DGT devices with different binding phases (Chelex-100 and P81 and DE81membranes) were used to perform the in situ speciation of Mn. A comparison of the results from deploying DGT in the laboratory and in situ shows that the speciation of Mn in TAMD should be performed in situ. Linear deployment curves (from in situ experiments) indicate that the DGT device containing the Chelex-100 binding phase can be used to evaluate Mn lability in TAMD. The labile Mn fraction (from in situ measurements) obtained using the device containing the Chelex-100 resin ranged from 63 to 81% of the total Mn concentration and, when compared to the speciation obtained using the CHEAQS software, indicated that this device was capable of uptaking the free Mn2+ and a portion of the MnSO4(aq). The values obtained using the DGT technique were compared to those from on site solid phase extraction, and a good agreement was found between the results. The amount of negative Mn species sampled by DE81 device was insignificant (<1.5%) for all of the sites. Sites containing a relatively small amount of Ca (<40mgL-1) and measured using devices containing the P81 membrane agreed with the concentration predicted by the CHEAQS software for positive Mn species (Mn2+ and Mn(OH)+). Nevertheless, the speciation obtained using the CHEAQS software indicated that the concentrations of positive Mn species were underestimated for sites with relatively high Ca concentrations (>150mgL-1), which take place due to the saturation of binding sites in the P81 membrane. © 2013 Elsevier B.V.
Resumo:
Includes bibliography
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this systematic review was to evaluate clinical studies on the follow-up survival of implants inserted in the zygomatic bone for maxillary rehabilitation. A comprehensive search of studies published from 2000 to July 2012 and listed in the PubMed/MEDLINE, Embase, and Cochrane Library databases was performed in accordance with the PRISMA statement. Relevant studies were selected according to predetermined inclusion and exclusion criteria. The initial database search yielded 751 titles. After filtering, 313 abstracts were selected, culminating in 42 full text articles. Application of eligibility criteria led to the elimination of 17 articles. Hence 25 full-text articles were considered clinically relevant and were included. Calculations of the interval survival rates and cumulative survival rates of implants could be carried out on the data extracted from the final list of included studies for the different time intervals. These studies reported the insertion of a total of 1541 zygomatic implants and 33 implant failures. Failure generally occurred during the first year interval and was related to clinical complications, such as recurrent acute and chronic sinusitis. After a 36-month follow-up, the survival rate was 97.86%. Additional studies with longer follow-up periods, including the number of zygomatic implants inserted and details of the variations in the surgical techniques used and the impact of the maxillary morphology are still required.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work deals with a red phosphor. Y3BO6:Eu3+, and its corresponding poly(N-vinylpyrrolidone) (PVP)/Y3BO6:Eu3+ luminescent composite film suitable for applications in the next generation of Hg-free lamps based on near ultraviolet (UV) light emitting diodes (LEDs). Well crystallized samples of Y3BO6 powders with the Eu3+ content up to 20 mol% were prepared by the Pechini method. After structural, morphological and optical characterization, the best doping rate of Eu3+ in the matrix was determined to be 15 mol%. This optimal powder, which is highly friable, was easily ground into fine particles and homogeneously dispersed into a PVP polymer solution to give rise to a polymer phosphor composite. Structural and optical features of the composite film have been studied and compared to those of a pristine PVP film and Y3BO6:Eu3+ powder. All the characterization (XRD, SAXS, luminescence...) proved that the red phosphor particles are well incorporated into the polymer composite film which exhibited the characteristic red emission of Eu3+ under UV light excitation. Furthermore, photostability of the polymer/phosphor composite film under UV-LED irradiation was evaluated from exposure to accelerated artificial photoageing at wavelengths above 300 nm.