938 resultados para producing liquid suspensions containing
Resumo:
Chemical speciation in foodstuffs is of uttermost importance since it is nowadays recognized that both toxicity and bioavailability of an element depend on the chemical form in which the element is present. Regarding arsenic, inorganic species are classified as carcinogenic while organic arsenic, such as arsenobetaine (AsB) or arsenocholine (AsC), is considered less toxic or even non-toxic. Coupling a High Performance Liquid Chromatographer (HPLC) with an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) combines the power of separation of the first with the selectivity and sensitivity of the second. The present work aims at developing a method, using HPLC-ICP-MS technique, to identify and quantify the chemical species of arsenic present in two food matrices, rice and fish. Two extraction methods, ultrasound and microwave, and different settings were studied. The best method was chosen based on recovery percentages. To ensure that no interconversion of species was occurring, individual spikes of each species of arsenic were made in both matrices and recovery rates were calculated. To guaranty accurate results reference material BCR-627 TUNA FISH, containing certified values for AsB and DMA, was analyzed. Chromatographic separation was achieved using an anion exchange column, HAMILTON-PRP X-100, which allowed to separate the four arsenic species for which standards were available (AsB, dimethylarsenic (DMA), arsenite (AsIII), arsenate (AsV). The mobile phase was chosen based on scientific literature and adjusted to laboratory conditions. Different gradients were studied. As a result we verified that the arsenic species present in both matrices were not the same. While in fish 90% of the arsenic present was in the form of arsenobetaine, in rice 80% of arsenic was present as DMA and 20% as inorganic arsenic.
Resumo:
Methanol is an important and versatile compound with various uses as a fuel and a feedstock chemical. Methanol is also a potential chemical energy carrier. Due to the fluctuating nature of renewable energy sources such as wind or solar, storage of energy is required to balance the varying supply and demand. Excess electrical energy generated at peak periods can be stored by using the energy in the production of chemical compounds. The conventional industrial production of methanol is based on the gas-phase synthesis from synthesis gas generated from fossil sources, primarily natural gas. Methanol can also be produced by hydrogenation of CO2. The production of methanol from CO2 captured from emission sources or even directly from the atmosphere would allow sustainable production based on a nearly limitless carbon source, while helping to reduce the increasing CO2 concentration in the atmosphere. Hydrogen for synthesis can be produced by electrolysis of water utilizing renewable electricity. A new liquid-phase methanol synthesis process has been proposed. In this process, a conventional methanol synthesis catalyst is mixed in suspension with a liquid alcohol solvent. The alcohol acts as a catalytic solvent by enabling a new reaction route, potentially allowing the synthesis of methanol at lower temperatures and pressures compared to conventional processes. For this thesis, the alcohol promoted liquid phase methanol synthesis process was tested at laboratory scale. Batch and semibatch reaction experiments were performed in an autoclave reactor, using a conventional Cu/ZnO catalyst and ethanol and 2-butanol as the alcoholic solvents. Experiments were performed at the pressure range of 30-60 bar and at temperatures of 160-200 °C. The productivity of methanol was found to increase with increasing pressure and temperature. In the studied process conditions a maximum volumetric productivity of 1.9 g of methanol per liter of solvent per hour was obtained, while the maximum catalyst specific productivity was found to be 40.2 g of methanol per kg of catalyst per hour. The productivity values are low compared to both industrial synthesis and to gas-phase synthesis from CO2. However, the reaction temperatures and pressures employed were lower compared to gas-phase processes. While the productivity is not high enough for large-scale industrial operation, the milder reaction conditions and simple operation could prove useful for small-scale operations. Finally, a preliminary design for an alcohol promoted, liquid-phase methanol synthesis process was created using the data obtained from the experiments. The demonstration scale process was scaled to an electrolyzer unit producing 1 Nm3 of hydrogen per hour. This Master’s thesis is closely connected to LUT REFLEX-platform.
Resumo:
In this work, the effects of chemotaxis and steric interactions in active suspensions are analyzed by extending the kinetic model proposed by Saintillan and Shelley [1, 2]. In this model, a conservation equation for the active particle configuration is coupled to the Stokes equation for the flow arising from the force dipole exerted by the particles on the fluid. The fluid flow equations are solved spectrally and the conservation equation is solved by second-order finite differencing in space and second-order Adams-Bashforth time marching. First, the dynamics in suspensions of oxytactic run-and-tumble bacteria confined in thin liquid films surrounded by air is investigated. These bacteria modify their tumbling behavior by making temporal comparisons of the oxygen concentration, and, on average, swim towards high concentrations of oxygen. The kinetic model proposed by Saintillan and Shelley [1, 2] is modified to include run-and-tumble effects and oxygentaxis. The spatio-temporal dynamics of the oxygen and bacterial concentration are analyzed. For small film thicknesses, there is a weak migration of bacteria to the boundaries, and the oxygen concentration is high inside the film as a result of diffusion; both bacterial and oxygen concentrations quickly reach steady states. Above a critical film thickness (approximately 200 micron), a transition to chaotic dynamics is observed and is characterized by turbulent-like 3D motion, the formation of bacterial plumes, enhanced oxygen mixing and transport into the film, and hydrodynamic velocities of magnitudes up to 7 times the single bacterial swimming speed. The simulations demonstrate that the combined effects of hydrodynamic interactions and oxygentaxis create collective three-dimensional instabilities which enhances oxygen availability for the bacteria. Our simulation results are consistent with the experimental findings of Sokolov et al. [3], who also observed a similar transition with increasing film thickness. Next, the dynamics in concentrated suspensions of active self-propelled particles in a 3D periodic domain are analyzed. We modify the kinetic model of Saintillan and Shelley [1, 2] by including an additional nematic alignment torque proportional to the local concentration in the equation for the rotational velocity of the particles, causing them to align locally with their neighbors (Doi and Edwards [4]). Large-scale three- dimensional simulations show that, in the presence of such a torque both pusher and puller suspensions are unstable to random fluctuations and are characterized by highly nematic structures. Detailed measures are defined to quantify the degree and direction of alignment, and the effects of steric interactions on pattern formation will be presented. Our analysis shows that steric interactions have a destabilizing effect in active suspensions.
Resumo:
Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOO^(R(n)pyH)] + and BF_(4)^(-) , ReO_(4)^(-), NO_(3)^(-), CF_(3)SO_(3)^(-), CuCl_(4)^(2-) counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOO^(R(12)pyH)][ReO_(4)] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl_(4)^(2-) salts exhibit the best LC properties followed by the ReO_(4)^(-) ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO_(4)^(-) , and CuCl_(4)^(2-) families, and for the solid phase in one of the non-mesomorphic Cl^(-) salts. The highest ionic conductivity was found for the smectic mesophase of the ReO_(4)^(-) containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure.
Resumo:
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) strains may be responsible for food-borne infections in humans. Twenty-eight STEC and 75 EPEC strains previously isolated from French shellfish-harvesting areas and their watersheds and belonging to 68 distinguishable serotypes were characterized in this study. High-throughput real-time PCR was used to search for the presence of 75 E. coli virulence-associated gene targets, and genes encoding Shiga toxin (stx) and intimin (eae) were subtyped using PCR tests and DNA sequencing, respectively. The results showed a high level of diversity between strains, with 17 unique virulence gene profiles for STEC and 56 for EPEC. Seven STEC and 15 EPEC strains were found to display a large number or a particular combination of genetic markers of virulence and the presence of stx and/or eae variants, suggesting their potential pathogenicity for humans. Among these, an O26:H11 stx1a eae-β1 strain was associated with a large number of virulence-associated genes (n = 47), including genes carried on the locus of enterocyte effacement (LEE) or other pathogenicity islands, such as OI-122, OI-71, OI-43/48, OI-50, OI-57, and the high-pathogenicity island (HPI). One O91:H21 STEC strain containing 4 stx variants (stx1a, stx2a, stx2c, and stx2d) was found to possess genes associated with pathogenicity islands OI-122, OI-43/48, and OI-15. Among EPEC strains harboring a large number of virulence genes (n, 34 to 50), eight belonged to serotype O26:H11, O103:H2, O103:H25, O145:H28, O157:H7, or O153:H2.
Resumo:
This paper describes the preparation of poly(DL-lactide-co-glicolide) (PLGA) nanocapsules as a drug carrier system for the local anesthetic bupivacaine. The system was characterized and its stability investigated. The results showed a size distribution with a polydispersity index of 0.12, an average diameter of 148 nm, a zeta potential of -43.5 mV and an entrapment efficiency of 75.8%. The physicochemical properties of polymeric nanocapsule suspensions (average diameter, polydispersity, zeta potential and drug association efficiency) were evaluated as a function of time to determine the formulation stability. The formulation did not display major changes in these properties over the time, and it was considered stable up to 120 days of storage at room temperature. The results reported here which refer to the initial characterization of these new formulations for the local anesthetic bupivacaine show a promising potential for future in vivo studies.
Resumo:
The aim of this work was to investigate the influence of the oily nucleus composition on physico-chemical properties and anesthetic activity of poly (lactide-co-glycolide) nanocapsules with benzocaine.Nanocapsules containing benzocaine were prepared with three different oily nucleus composition and characterized by mean diameter, polydispersivity, zeta potential, pH and stability were investigated as a function of time. In vitro release kinetics were performed in a system with two compartments separated by a cellulose membrane. Intensity and duration of analgesia were evaluated in rats by sciatic nerve blockade.The greatest stability, slower release profile and improvement in the local anesthetic activity of BZC were obtained with the formulation using USP mineral oil as component.Results from our study provide useful perspectives on selection of the primary materials needed to produce suspensions of polymeric nanocapsules able to act as carriers of BZC, with potential future application in the treatment of pain.
Resumo:
Isobaric vapor-liquid equilibria of binary mixtures of isopropyl acetate plus an alkanol (1-propanol, 2-propanol, 1-butanol, or 2-butanol) were measured at 101.32 kPa, using a dynamic recirculating still. An azeotropic behavior was observed only in the mixtures of isopropyl acetate + 2-propanol and isopropyl acetate + 1-propanol. The application of four thermodynamic consistency tests (the Herington test, the Van Ness test, the infinite dilution test, and the pure component test) showed the high quality of the experimental data. Finally, both NRTL and UNIQUAC activity coefficient models were successfully applied in the correlation of the measured data, with the average absolute deviations in vapor phase composition and temperature of 0.01 and 0.16 K, respectively.
Resumo:
Terephthalic acid (PTA) is one of the monomers used for the synthesis of the polyester, polyethylene terephthalate (PET), that is used for the large-scale manufacture of synthetic fibers and plastic bottles. PTA is largely produced from the liquid-phase oxidation of petroleum-derived p-xylene (PX). However, there are now ongoing worldwide efforts exploring alternative routes for producing PTA from renewable, biomass resources.
In this thesis, I present a new route to PTA starting from the biomass-derived platform chemical, 5-hydroxymethylfurfural (HMF). This route utilizes new, selective Diels-Alder-dehydration reactions involving ethylene and is advantageous over the previously proposed Diels-Alder-dehydration route to PTA from HMF via 2,5-dimethylfuran (DMF) since the H2 reduction of HMF to DMF is avoided. Specifically, oxidized derivatives of HMF are reacted as is, or after etherification-esterification with methanol, with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids in order to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA) is reacted with high pressure ethylene over a pure-silica molecular sieve catalyst containing framework tin (Sn-Beta) to produce the Diels-Alder-dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with ~30% selectivity at ~20% yield. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with >70% selectivity at >20% yield. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder-dehydration product is observed.
An investigation to elucidate the reaction network and side products in the conversion of MMFC to MMBC was performed, and the main side products are found to be methyl 4-formylcyclohexa-1,3-diene-1-carboxylate and the ethylene Diels-Alder adduct of this cyclohexadiene. These products presumably form by a different dehydration pathway of the MMFC/ethylene Diels-Alder adduct and should be included when determining the overall selectivity to PTA or DMT since, like MMBC, these compounds are precursors to PTA or DMT.
Fundamental physical and chemical information on the ethylene Diels-Alder-dehydration reactions catalyzed by the Lewis acid-containing molecular sieves was obtained. Madon-Boudart experiments using Zr-Beta as catalyst show that the reaction rates are limited by chemical kinetics only (physical transport limitations are not present), all the Zr4+ centers are incorporated into the framework of the molecular sieve, and the whole molecular sieve crystal is accessible for catalysis. Apparent activation energies using Zr-Beta are low, suggesting that the overall activation energy of the system may be determined by a collection of terms and is not the true activation energy of a single chemical step.
Resumo:
A new design route is proposed in order to fabricate aluminum matrix diamond-containing composite materials with optimized values of thermal conductivity (TC) for thermal management applications. The proper size ratio and proportions of particulate diamond–diamond and diamond–SiC bimodal mixtures are selected based on calculations with predictive schemes, which combine two main issues: (i) the volume fraction of the packed particulate mixtures, and (ii) the influence of different types of particulates (with intrinsically different metal/reinforcement interfacial thermal conductances) on the overall thermal conductivity of the composite material. The calculated results are validated by comparison with measurements on composites fabricated by gas pressure infiltration of aluminum into preforms of selected compositions of particle mixtures. Despite the relatively low quality (low price) of the diamond particles used in this work, outstanding values of TC are encountered: a maximum of 770 W/m K for Al/diamond–diamond and values up to 690 W/m K for Al/diamond–SiC.
Resumo:
Purpose: To formulate the water in oil (W/O) emulsion of corn silk (CS) extract and to evaluate its stability at various storage conditions. Methods: Ethanol CS extract was prepared using maceration (cold) technique. A 4 % CS emulsion was prepared using varying concentrations of liquid paraffin, ABIL EM90 and water. The formulations were kept at 40 oC for 28 days and to screen out the less stable formulations. The remaining formulations were further stressed at 50 oC to choose the most stable formulation. The optimized formulation was evaluated for physical characteristics including phase separation, rheology and mean droplet size. The physical stability of the formulation was evaluated by monitoring these parameters over a period of 12 weeks at 8, 25, 40 and 40 oC, and 75 % RH. Results: The chosen formulation showed good resistance to phase separation on centrifugation under all storage conditions. Rheological behavior followed non-Newtonian pseudoplastic pattern at various storage conditions. Mean droplet size of freshly prepared formulation was 2.98 ± 1.32 µm and did not show significant (p < 0.05) changes at normal storage conditions (8 and 25 oC). Conclusion: The findings indicate that the developed CS extract W/O emulsion is stable and therefore may be suitable for topical use on skin as an antioxidant preparation.
Resumo:
Purpose: To develop and validate a simple, efficient and reliable Liquid chromatographic-mass spectrometric (LC-MS/MS) method for the quantitative determination of two dermatological drugs, Lamisil® (terbinafine) and Proscar® (finasteride), in split tablet dosage form. Methods: Thirty tablets each of the 2 studied medications were randomly selected. Tablets were weighed and divided into 3 groups. Ten tablets of each drug were kept intact, another group of 10 tablets were manually split into halves using a tablet cutter and weighed with an analytical balance; a third group were split into quarters and weighed. All intact and split tablets were individually dissolved in a water: methanol mixture (4:1), sonicated, filtered and further diluted with mobile phase. Optimal chromatographic separation and mass spectrometric detection were achieved using an Agilent 1200 HPLC system coupled with an Agilent 6410 triple quadrupole mass spectrometer. Analytes were eluted through an Agilent eclipse plus C8 analytical column (150 mm × 4.6 mm, 5 μm) with a mobile phase composed of solvent A (water) containing 0.1% formic acid and 5mM ammonium formate pH 7.5, and solvent B (acetonitrile mixed with water in a ratio A:B 55:45) at a flow rate of 0.8 mL min-1 with a total run time of 12 min. Mass spectrometric detection was carried out using positive ionization mode with analyte quantitation monitored by multiple reaction monitoring (MRM) mode. Results: The proposed analytical method proved to be specific, robust and adequately sensitive. The results showed a good linear fit over the concentration range of 20 - 100 ng mL-1 for both analytes, with a correlation coefficient (r2) ≥ 0.999 and 0.998 for finasteride and terbinafine, respectively. Following tablet splitting, the drug content of the split tablets fell outside of the proxy USP specification for at least 14 halves (70 %) and 34 quarters (85 %) of FIN, as well as 16 halves (80 %) and 37 quarters (92.5 %) of TBN. Mean weight loss, after splitting, was 0.58 and 2.22 % for FIN half- and quarter tablets, respectively, and 3.96 and 4.09 % for TBN half- and quarter tablets,respectively. Conclusion: The proposed LC-MS/MS method has successfully been used to provide precise drug content uniformity of split tablets of FIN and TBN. Unequal distribution of the drug on the split tablets is indicated by the high standard deviation beyond the accepted value. Hence, it is recommended not to split non-scored tablets especially, for those medications with significant toxicity
Resumo:
Thesis (Master, Chemical Engineering) -- Queen's University, 2016-08-16 04:58:55.749
Resumo:
This study aimed to evaluate the e ect of diets containing increasing levels of citrus pulp on the physic-chemical and microbiological characteristics of horses feces. Five mares, at an average age of 3.5 years old and body weight of 492 ± 44.5 kg were arranged in a 5 x 5 Latin Square. The experimental diet consisted of 60% coast-cross hay and 40 % of concentrate with increasing levels of citrus pulp (0, 7, 14, 21, and 28 %). To determine the fecal pH, samples were collected directly from the oor, immediately after defecation, in the rst feces the day at 07:00 a.m., and color and fecal consistency were evaluated. For microbiological analysis, an aliquot was reserved in plastic bags, frozen, and sent to the microbiological laboratory for further analysis. Lactic acid bacteria were counted for Lactobacillus spp. and Streptococcus spp. from fecal samples under anaerobic conditions. The diet produced di erences (P<0.05) in feces consistency 98% had normal and rm stools, while 2% had loose ruminant-type feces. We observed no di erence (P<0.05) for color, verifying 100% of greenish feces, normal for equines. There was no e ect (P>0.05) on pH and on the number of Lactobacillus spp. and Streptococcus spp. The inclusion of up to 28% citrus pulp concentrates for horses did not promote change in the physio-chemical characteristics and on the population of lactic acid-producing bacteria in feces.