955 resultados para primary airway epithelial cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously demonstrated that PAS-1, a 200 kDa protein from Ascaris suum, has a potent immunomodulatory effect on humoral and cell-mediated responses induced by APAS-3 (an allergenic protein from A. suum) or unrelated antigens. In this study, we investigated the mechanisms by which PAS-1 is able to induce this effect on an allergic airway inflammation induced by OVA in mice. C57BL/6 mice were adoptively transferred on day 0 with seven different PAS-1-primed cell populations: PAS-1-primed CD19(+) or B220(+) or CD3(+) or CD4(+) or CD8(+) or CD4(+) CD25) or CD4(+) CD25(+) lymphocytes. These mice were immunized twice with OVA and alum by intraperitoneal route (days 0 and 7) and challenged twice by intranasal route (days 14 and 21). Two days after the last challenge, the airway inflammation was evaluated by antibody levels, cellular migration, eosinophil peroxidase levels, cytokine and eotaxin production, and pulmonary mechanical parameters. Among the adoptively transferred primed lymphocytes, only CD4(+) CD25(+), CD8(+) or the combination of both T cells impaired the production of total IgE and OVA-specific IgE and IgG1 antibodies, eosinophilic airway inflammation, Th2-type cytokines (IL-4, IL-5 and IL-13), eotaxin release and airway hyperreactivity. Moreover, airway recruited cells from CD4(+) CD25(+) and CD8(+) T-cell recipient secreted more IL-10/TGF-beta and IFN-gamma, respectively. Moreover, we found that PAS-1 expands significantly the number of CD4(+) CD25(+) FoxP3(+) and CD8(+) gamma delta TCR(+) cells. In conclusion, these findings demonstrate that the immunomodulatory effect of PAS-1 is mediated by these T-cell subsets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis (Pb) yeast cells can enter mammalian cells and probably manipulate the host cell environment to favor their own growth and survival. We studied the uptake of strain Pb 18 into A549 lung and Vero epithelial cells, with an emphasis on the repercussions in the cytoskeleton and the apoptosis of host cells. Cytoskeleton components of the host cells, such as actin and tubulin, were involved in the P. brasiliensis invasion process. Cytochalasin D and colchicine treatment substantially reduced invasion, indicating the functional participation of microfilaments (MFs) and microtubules (MTs) in this mechanism. Cytokeratin could also play a role in the P. brasiliensis interaction with the host. Gp43 was recognized by anti-actin and anti-cytokeratin antibodies, but not by anti-tubulin. The apoptosis induced by this fungus in infected epithelial cells was demonstrated by various techniques: TUNEL, DNA fragmentation and Bak and Bcl-2 immunocytochemical expression. DNA fragmentation was observed in infected cells but not in uninfected ones, by both TUNEL and gel electrophoresis methods. Moreover, Bcl-2 and Bak did not show any differences until 24 h after infection of cells, suggesting a competitive mechanism that allows persistence of infection. Overexpression of Bak was observed after 48 h, indicating the loss of competition between death and survival signals. In conclusion, the mechanisms of invasion of host cells, persistence within them, and the subsequent induction of apoptosis of such cells may explain the efficient dissemination of P. brasiliensis. (C) 2004 Published by Elsevier SAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CDX2 is a recently cloned homeobox gene that encodes an intestine-specific transcription factor, expressed in the nuclei of epithelial cells throughout the intestine, from duodenum to rectum. While expression of CDX2 protein in primary and metastatic colorectal carcinomas has been previously documented, neither the sensitivity nor the specificity of CDX2 expression, as determined by immunohistochemistry, for colorectal adenocarcinoma has been determined. We performed an immunohistochemical survey of 476 tumors with a monoclonal antibody, CDX2-88, including 89 tumors from the colon and duodenum and 95 tumors from other gastrointestinal sites, including the esophagus, stomach, pancreatobiliary system, gastrointestinal carcinoids, and liver. CDX2 was expressed uniformly (that is, in 76-100% of tumor cells) in all but one of the evaluated colorectal and duodenal tumors. High-level expression of CDX2 was also found, however, in mucinous ovarian carcinomas and adenocarcinomas primary to the urinary bladder of which 64% and 100% were positive, respectively. Gastric, gastroesophageal, and pancreatic adenocarcinomas and cholangiocarcinomas all showed similar, heterogeneous patterns of CDX2 expression. Most tumors in each group showed CDX2 expression by a minority of cells, whereas a substantial minority of cases in each group was completely negative and a smaller minority was uniformly positive. Gastrointestinal carcinoids gave similarly varied results, but the majority (58%) was negative. Hepatocellular carcinomas showed no expression of CDX2. Only very rare examples of carcinomas of the genitourinary and gynecologic tracts, breast, lung, and head and neck showed significant levels of CDX2 expression. In this study of primary and metastatic epithelial tumors, uniform CDX2 expression is demonstrated to be an exquisitely sensitive and highly, but incompletely, specific marker of intestinal adenocarcinomas. Compared with villin, a previously described marker of GI adenocarcinomas, CDX2 demonstrated superior sensitivity and comparable specificity. CDX2 expression can be seen, however, in selected non-GI adenocarcinomas such as mucinous ovarian carcinomas and adenocarcinomas of the urinary bladder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epithelial cells from involuting rat ventral prostate (VP) express Matrilysin (MMP-7) mRNA. Herein, we investigated by immunohistochemistry the NIMP-7 protein location and its association with tissue changes following castration in the VP. Normal and castrated adult male Wistar rats were sacrificed at different times after surgery. VP was examined by immunocytochemistry and immunoprecipitation. Castration promoted a shrinking of prostate ducts with an extensive stromal remodeling. In the VP from normal rats, MMP-7 immunoreactivity was found in epithelial secretory granules. Three days after castration, immunostaining for MMP-7 was found in both the epithelial secretory granules and in the stroma just below the epithelium, mainly at the distal ductal tips. At seven and 21 days after castration, the immunostaining for MMP-7 was found only in the stromal space. Immunoprecipitation confirmed the specificity of the primary antibody by rescuing a pro-enzyme form (28 kDa) in the prostate extracts. The present results suggest that MMP-7 participates in the epithelial-stromal interface remodeling of the ventral prostate during the involution achieved by castration, probably in the degradation of components of the epithelial basement membrane. (c) 2007 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung cancer is a leading cause of death in developed countries. Although smoking cessation is a primary strategy for preventing lung cancer, former smokers remain at high risk of cancer. Accordingly, there is a need to increase the efficacy of lung cancer prevention. Poor bioavailability is the main factor limiting the efficacy of chemopreventive agents. The aim of this study was to increase the efficacy of cancer chemopreventive agents by using lipid nanoparticles (NPs) as a carrier. This study evaluated the ability of lipid NPs to modify the pharmacodynamics of chemopreventive agents including N-acetyl-L-cysteine, phenethyl isothiocyanate and resveratrol (RES). The chemopreventive efficacy of these drugs was determined by evaluating their abilities to counteract cytotoxic damage (DNA fragmentation) induced by cigarette smoke condensate (CSC) and to activate protective apoptosis (annexin-V cytofluorimetric staining) in bronchial epithelial cells both in vitro and in ex vivo experiment in mice. NPs decreased the toxicity of RES and increased its ability to counteract CSC cytotoxicity. NPs significantly increased the ability of phenethyl isothiocyanate to attenuate CSC-induced DNA fragmentation at the highest tested dose. In contrast, this potentiating effect was observed at all tested doses of RES, NPs dramatically increasing RES-induced apoptosis in CSC-treated cells. These results provide evidence that NPs are highly effective at increasing the efficacy of lipophilic drugs (RES) but are not effective towards hydrophilic agents (N-acetyl-L-cysteine), which already possess remarkable bioavailability. Intermediate effects were observed for phenethyl isothiocyanate. These findings are relevant to the identification of cancer chemopreventive agents that would benefit from lipid NP delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The epithelial-mesenchymal transition (EMT) is an essential process in the tumor progression and metastasis. In human prostate carcinoma (PCa), the upregulation of cytokeratin and E-cadherin and down-regulation of vimentin have been associated with aggressive phenotype and poor prognosis. Due to the importance of canine cancer model it was evaluated the immunoexpression of AE1/AE3, E-cadherin and vimentin in canine prostatic lesions. Patients and Methods: A total of 75 prostatic tissues formalin-fixed paraffin embedded from dogs was selected: 10 normal prostatic tissues, 20 benign prostatic hyperplasia (BPH), 25 proliferative inflammatory atrophy (PIA) and 20 PCa. AE1/AE3 was detected with a monoclonal antibody (Invitrogen, 180132) at a 1:300 dilution, applied for 45 min at room temperature (RT). The antibody against Vimentin (V9, Invitrogen) and E-cadherin (NCH-38, Dako cytomatiomn) were monoclonal mouse antibodies, used at a 1:300 and 1:200, respectively, for 45 min at RT. The immunolabelling was performed by a polymer method (Histofine, Nichirei Biosciences,). A negative control was performed for all antibodies by omitting the primary antibody and substituting with Tris-buffered saline. The percentage of C-MYC, E-cadherin, and p63- positive cells per lesion was evaluated according to Prowatke et al. (2007). The samples were scored separately according to staining intensity and graded semi-quantitatively as negative, weakly positive, moderately positive, and strongly positive. The score was done in one 400 magnification field, considering only the lesion, since this was done in a TMA core of 1 mm. For statistical analyses, the immunostaining classifications were reduced to two categories: negative and positive. The negative category included negative and weakly positive staining. Chi-square or Fisher exact test was used to determine the association between the categorical variables. Results: All prostatic normal and BPH tissue were positive for cytokeratin, E-cadherin and negative for vimentin. Similarly, all PIA samples were positive for AE1/AE3. From those samples, 48% (12/25) were also positive for vimentin. 55% of PCa (11/25) was positive for vimentin and among these samples 75% (6/11) was also positive for AE1/AE3 and 45% (5/11) was negative for AE1/AE3. PIA and PCa presented a higher number of vimentin positive cells when compared with normal tissue (p=0.032). E-cadherin expression had no statistical difference among diagnosis groups, but we found a higher number of positive cases, with more than 51% of positive immunostaining in BPH and PIA (81.25% and 78.60% of the cases, respectively) than in PCa (55.55%). Conclusion: The carcinogenesis process regarding prostatic epithelial cells in dogs showed higher vimentin protein expression associated with concomitant loss of the cytokeratin and E-cadherin, similar in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DOK1 gene is a putative tumour suppressor gene located on the human chromosome 2p13 which is frequently rearranged in leukaemia and other human tumours. We previously reported that the DOK1 gene can be mutated and its expression down-regulated in human malignancies. However, the mechanism underlying DOK1 silencing remains largely unknown. We show here that unscheduled silencing of DOK1 expression through aberrant hypermethylation is a frequent event in a variety of human malignancies. DOK1 was found to be silenced in nine head and neck cancer (HNC) cell lines studied and DOK1 CpG hypermethylation correlated with loss of gene expression in these cells. DOK1 expression could be restored via demethylating treatment using 5-aza-2'deoxycytidine. In addition, transduction of cancer cell lines with DOK1 impaired their proliferation, consistent with the critical role of epigenetic silencing of DOK1 in the development and maintenance of malignant cells. We further observed that DOK1 hypermethylation occurs frequently in a variety of primary human neoplasm including solid tumours (93% in HNC, 81% in lung cancer) and haematopoietic malignancy (64% in Burkitt's lymphoma). Control blood samples and exfoliated mouth epithelial cells from healthy individuals showed a low level of DOK1 methylation, suggesting that DOK1 hypermethylation is a tumour specific event. Finally, an inverse correlation was observed between the level of DOK1 gene methylation and its expression in tumour and adjacent non tumour tissues. Thus, hypermethylation of DOK1 is a potentially critical event in human carcinogenesis, and may be a potential cancer biomarker and an attractive target for epigenetic-based therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physicochemical properties of nanoparticles make them suitable for biomedical applications. Due to their ‘straight-forward’ synthesis, their known biocompatibility, their strong optical properties, their ability for targeted drug delivery and their uptake potential into cells gold nanoparticles are highly interesting for biomedical applications. In particular, the therapy of brain diseases (neurodegenerative diseases, ischemic stroke) is a challenge for contemporary medicine and gold nanoparticles are currently being studied in the hope of improving drug delivery to the brain.rnIn this thesis three major conclusions from the generated data are emphasized.rn1. After improvement of the isolation protocol and culture conditions, the formation of a monolayer of porcine brain endothelial cells on transwell filters lead to a reproducible and tight in vitro monoculture which exhibited in vivo blood brain barrier (BBB) characteristics. The transport of nanoparticles across the barrier was studied using this model.rn2. Although gold nanoparticles are known to be relatively bioinert, contaminants of the nanoparticle synthesis (i.e. CTAB or sodium citrate) increased the cytotoxicity of gold nanoparticles, as shown by various publications. The results presented in this thesis demonstrate that contaminants of the nanoparticle synthesis such as sodium citrate increased the cytotoxicity of the gold nanoparticles in endothelial cells but in a more dramatic manner in epithelial cells. Considering the increased uptake of these particles by epithelial cells compared to endothelial cells it was demonstrated that the observed decrease of cell viability appeared to be related to the amount of internalized gold nanoparticles in combination with the presence of the contaminant.rn3. Systematically synthesized gold nanoparticles of different sizes with a variety of surface modifications (different chemical groups and net charges) were investigated for their uptake behaviour and functional impairment of endothelial cells, one of the major cell types making up the BBB. The targeting of these different nanoparticles to endothelial cells from different parts of the body was investigated in a comparative study of human microvascular dermal and cerebral endothelial cells. In these experiments it was demonstrated that different properties of the nanoparticles resulted in a variety of uptake patterns into cells. Positively charged gold nanoparticles were internalized in high amounts, while PEGylated nanoparticles were not taken up by both cell types. Differences in the uptake behavior were also demonstrated for neutrally charged particles of different sizes, coated with hydroxypropylamine or glucosamine. Endothelial cells of the brain specifically internalized 35nm neutrally charged hydroxypropylamine-coated gold nanoparticles in larger amounts compared to dermal microvascular endothelial cells, indicating a "targeting" for brain endothelial cells. Co-localization studies with flotillin-1 and flotillin-2 showed that the gold nanoparticles were internalized by endocytotic pathways. Furthermore, these nanoparticles exhibited transcytosis across the endothelial cell barrier in an in vitro BBB model generated with primary porcine brain endothelial cells (1.). In conclusion, gold nanoparticles with different sizes and surface characteristics showed different uptake patterns in dermal and cerebral endothelial cells. In addition, gold nanoparticles with a specific size and defined surface modification were able to cross the blood-brain barrier in a porcine in vitro model and may thus be useful for controlled delivery of drugs to the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Important insights into the molecular mechanism of T cell extravasation across the blood-brain barrier (BBB) have already been obtained using immortalized mouse brain endothelioma cell lines (bEnd). However, compared with bEnd, primary brain endothelial cells have been shown to establish better barrier characteristics, including complex tight junctions and low permeability. In this study, we asked whether bEnd5 and primary mouse brain microvascular endothelial cells (pMBMECs) were equally suited as in vitro models with which to study the cellular and molecular mechanisms of T cell extravasation across the BBB. We found that both in vitro BBB models equally supported both T cell adhesion under static and physiologic flow conditions, and T cell crawling on the endothelial surface against the direction of flow. In contrast, distances of T cell crawling on pMBMECs were strikingly longer than on bEnd5, whereas diapedesis of T cells across pMBMECs was dramatically reduced compared with bEnd5. Thus, both in vitro BBB models are suited to study T cell adhesion. However, because pMBMECs better reflect endothelial BBB specialization in vivo, we propose that more reliable information about the cellular and molecular mechanisms of T cell diapedesis across the BBB can be attained using pMBMECs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morbilliviruses measles virus (MeV) and canine distemper virus (CDV) both rely on two surface glycoproteins, the attachment (H) and fusion proteins, to promote fusion activity for viral cell entry. Growing evidence suggests that morbilliviruses infect multiple cell types by binding to distinct host cell surface receptors. Currently, the only known in vivo receptor used by morbilliviruses is CD150/SLAM, a molecule expressed in certain immune cells. Here we investigated the usage of multiple receptors by the highly virulent and demyelinating CDV strain A75/17. We based our study on the assumption that CDV-H may interact with receptors similar to those for MeV, and we conducted systematic alanine-scanning mutagenesis on CDV-H throughout one side of the beta-propeller documented in MeV-H to contain multiple receptor-binding sites. Functional and biochemical assays performed with SLAM-expressing cells and primary canine epithelial keratinocytes identified 11 residues mutation of which selectively abrogated fusion in keratinocytes. Among these, four were identical to amino acids identified in MeV-H as residues contacting a putative receptor expressed in polarized epithelial cells. Strikingly, when mapped on a CDV-H structural model, all residues clustered in or around a recessed groove located on one side of CDV-H. In contrast, reported CDV-H mutants with SLAM-dependent fusion deficiencies were characterized by additional impairments to the promotion of fusion in keratinocytes. Furthermore, upon transfer of residues that selectively impaired fusion induction in keratinocytes into the CDV-H of the vaccine strain, fusion remained largely unaltered. Taken together, our results suggest that a restricted region on one side of CDV-H contains distinct and overlapping sites that control functional interaction with multiple receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory virus infections play an important role in cystic fibrosis (CF) exacerbations, but underlying pathophysiological mechanisms are poorly understood. We aimed to assess whether an exaggerated inflammatory response of the airway epithelium on virus infection could explain the increased susceptibility of CF patients towards respiratory viruses. We used primary bronchial and nasal epithelial cells obtained from 24 healthy control subjects and 18 CF patients. IL-6, IL-8/CXCL8, IP-10/CXCL10, MCP-1/CCL2, RANTES/CCL5 and GRO-α/CXCL1 levels in supernatants and mRNA expression in cell lysates were measured before and after infection with rhinoviruses (RV-16 and RV-1B) and RSV. Cytotoxicity was assessed by lactate dehydrogenate assay and flow cytometry. All viruses induced strong cytokine release in both control and CF cells. The inflammatory response on virus infection was heterogeneous and depended on cell type and virus used, but was not increased in CF compared with control cells. On the contrary, there was a marked trend towards lower cytokine production associated with increased cell death in CF cells. An exaggerated inflammatory response to virus infection in bronchial epithelial cells does not explain the increased respiratory morbidity after virus infection in CF patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During evolution, pathogenic bacteria have developed complex interactions with their hosts. This has frequently involved the acquisition of virulence factors on pathogenicity islands, plasmids, transposons, or prophages, allowing them to colonize, survive, and replicate within the host. In contrast, Mycoplasma species, the smallest self-replicating organisms, have regressively evolved from gram-positive bacteria by reduction of the genome to a minimal size, with the consequence that they have economized their genetic resources. Hence, pathogenic Mycoplasma species lack typical primary virulence factors such as toxins, cytolysins, and invasins. Consequently, little is known how pathogenic Mycoplasma species cause host cell damage, inflammation, and disease. Here we identify a novel primary virulence determinant in Mycoplasma mycoides subsp. mycoides Small Colony (SC), which causes host cell injury. This virulence factor, released in significant amounts in the presence of glycerol in the growth medium, consists of toxic by-products such as H2O2 formed by l-alpha-glycerophosphate oxidase (GlpO), a membrane-located enzyme that is involved in the metabolism of glycerol. When embryonic calf nasal epithelial cells are infected with M. mycoides subsp. mycoides SC in the presence of physiological amounts of glycerol, H2O2 is released inside the cells prior to cell death. This process can be inhibited with monospecific anti-GlpO antibodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-transplant bronchiolitis obliterans, also called bronchiolitis obliterans syndrome, affects up to 50-60% of patients who survive 5 yr after surgery according to its clinical definition, which is based on the degree of obstructive airway disease. Alloimmune-independent and -dependent mechanisms produce injuries and inflammation of epithelial cells and subepithelial structures, leading to aberrant tissue repair. The triggering of innate immunity by various infections or chemical injuries after, for example, gastroesophageal reflux, may lead to the release of danger signals that are able to activate dendritic cells, a crucial link with adaptive immunity. Inflammation can also increase the expression and display of major histocompatibility alloantigens and thus favor the initiation of rejection episodes. These phenomena may be limited in time and location or may be protracted. Reducing the risk of alloimmune-independent factors may be as important as treating acute episodes of lung rejection. Excessive immunosuppression may be deleterious by increasing the risk of infection, thereby triggering innate and adaptive immunity. New potential therapeutic targets are emerging from the research performed on leukotriene receptors, chemokine receptors, and growth factors. Neutralizing these molecules reduces the initial mononuclear and polynuclear infiltrates or the subsequent fibroproliferative process and the neovascular changes, feeding this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fine particles (0.1-2.5 microm in diameter) may cause increased pulmonary morbidity and mortality. We demonstrate with a cell culture model of the human epithelial airway wall that dendritic cells extend processes between epithelial cells through the tight junctions to collect particles in the "luminal space" and to transport them through cytoplasmic processes between epithelial cells across the epithelium or to transmigrate through the epithelium to take up particles on the epithelial surface. Furthermore, dendritic cells interacted with particle-loaded macrophages on top of the epithelium and with other dendritic cells within or beneath the epithelium to take over particles. By comparing the cellular interplay of dendritic cells and macrophages across epithelial monolayers of different transepithelial electrical resistance, we found that more dendritic cells were involved in particle uptake in A549 cultures showing a low transepithelial electrical resistance compared with dendritic cells in16HBE14o cultures showing a high transepithelial electrical resistance 10 min (23.9% versus 9.5%) and 4 h (42.1% versus 14.6%) after particle exposition. In contrast, the macrophages in A549 co-cultures showed a significantly lower involvement in particle uptake compared with 16HBE14o co-cultures 10 min (12.8% versus 42.8%) and 4 h (57.4% versus 82.7%) after particle exposition. Hence we postulate that the epithelial integrity influences the particle uptake by dendritic cells, and that these two cell types collaborate as sentinels against foreign particulate antigen by building a transepithelial interacting cellular network.