957 resultados para polymer films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive mortars are widely used to set porcelain stoneware tiles on buildings because their bond strength and flexibility properties increase the cladding serviceability. However, their long-term performance is not well understood, mainly the degradation of the polymeric matrix. The influence of moisture content on the flexibility of six adhesive mortars is investigated, based on standard EN 12002. Four of them have defined formulations and the other two are commercial and are widely used to set porcelain stoneware tiles on building facades in Brazil. The results show that moisture content above 6% is sufficient to reduce 50% of the mortar deformability, but that the drying process allows it to recover to a value similar to that prior to saturation; a logarithmic function best fits the correlation between moisture content and flexibility; water immersion increases matrix rigidity. It is suggested that standards should consider flexibility tests on both dried and wet samples as a requirement for polymer-modified mortars. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Pigment Volume Content (PVC) on fungal growth on acrylic paint formulations with and without biocide, exposed to weathering in three different climatic regions in Brazil for four years, was studied Latex paints. with PVC of 30%, 35% and 50%, were applied to autoclaved aerated concrete blocks pre-covered with acrylic sealer and acrylic plaster They were exposed to equatorial, tropical and temperate climates in north, south-east, and south Brazil Cladosporium was the most abundant fungal genus detected in the biofilm on the surfaces of all paint formulations at all sites after four years Heaviest fungal colonization occurred in the tropical south-east and lightest in the temperate south of the country, but more phototrophs, principally cyanobacteria, were detected in the equatorial region PVC and presence of biocides were shown to be of less importance than environmental conditions (irradiance, humidity and temperature) for biofilm formation and consequent discolouration These results have important implications for testing of paint formulations (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the applicability of a new algorithm for the estimation of mechanical properties from instrumented indentation data was studied for thin films. The applicability was analyzed with the aid of both three-dimensional finite element simulations and experimental indentation tests. The numerical approach allowed studying the effect of the substrate on the estimation of mechanical properties of the film, which was conducted based on the ratio h(max)/l between maximum indentation depth and film thickness. For the experimental analysis, indentation tests were conducted on AISI H13 tool steel specimens, plasma nitrated and coated with TiN thin films. Results have indicated that, for the conditions analyzed in this work, the elastic deformation of the substrate limited the extraction of mechanical properties of the film/substrate system. This limitation occurred even at low h(max)/l ratios and especially for the estimation of the values of yield strength and strain hardening exponent. At indentation depths lower than 4% of the film thickness, the proposed algorithm estimated the mechanical properties of the film with accuracy. Particularly for hardness, precise values were estimated at h(max)/l lower than 0.1, i.e. 10% of film thickness. (C) 2010 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a series of depositions of titanium nitride (TiN) films on M2 and D2 steel substrates were conducted in a Triode Magnetron Sputtering chamber. The temperature; gas flow and pressure were kept constant during each run. The substrate bias was either decreased or increased in a sequence of steps. Residual stress measurements were later conducted through the grazing X-ray diffraction method. Different incident angles were used in order to change the penetration depth and to obtain values of residual stress at different film depths. A model described by Dolle was adapted as an attempt to calculate the values of residual stress at each incident angle as a function of the value from each individual layer. Stress results indicated that the decrease in bias voltage during the deposition has produced compressive residual stress gradients through the film thickness. On the other hand, much less pronounced gradients were found in one of the films deposited with increasing bias voltage. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films obtained by plasma polymerization of ethyl ether, methyl or ethyl acetate, acetaldehyde, acetone and 2-propanol were compared. Infrared spectroscopy (FFIR), resistance to chemicals, contact angle measurements, X-ray photoelectron spectroscopy (XPS), optical and scanning electron microscopy (SEM), and quartz crystal microbalance (QCM) were carried out. For all films FTIR showed high intensity for polar bonds yet the films are not resistant to polar solvents. Contact angle measurements revealed hydrophilic and organophilic surfaces and XPS pointed out a high proportion of oxygenated bonds. All films showed good step coverage and peeling was significant only with acetone and 2-propanol. All films are adsorbent for organic compounds in a large scale of polarity but acetaldehyde and 2-propanol act like a selective membrane. Also, deposition of these films on hydrophobic substrates leads to island formation. A possible model to explain the results must consider the hydrogen bridge formation on 2-propanol and acetaldehyde films. Ethyl ether, ethyl and methyl acetate showed good characteristics for development of sensor and sample pretreatment using miniaturized devices. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, poly(vinyl butyral) (PVB) film originated from the mechanical separation of windshields was tested as all impact modifier of Polyamide-6 (PA-6). The changes undergone by PVB film during the recycling process and the blend manufacturing were evaluated by thermal analyses, infrared spectroscopy and loss oil ignition. Blends of PA-6/original PVB film and PA-6/recovered PVB film were obtained in concentrations ranging from 90/10 to 60/40. The mechanical properties of the blends were investigated and explained in light of the blends morphologies, which in turns were correlated to the changes undergone by the PVB film during the recycling process. The original film presented a plasticizer content of 33 wt.%, which decreased to as low as 20 wt.%, after the recycling and blend preparation processes. The PA-6/PVB film blends presented lower values of tensile strength and Young`s modulus than Polyamide-6, but all blends presented a dramatic increase in their toughness, with a special feature for the 40 wt.%(, blend, which resulted in a super toughened material (impact strength exceeding 500 J/m). Similar results were obtained with recovered PVB film and super tough blends were also obtained. The use of recovered PVB resulted in a smaller improvement of the impact strength due to the loss of plasticizer undergone during the recycling process. The morphological observations showed that if the interparticle distance is smaller than around 0.2 mu m (critical value), the notched Izod impact strength values increase considerably and the fracture surface of blends exhibit characteristics of tough failure. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid latices of poly(styrene-co-butyl acrylate) were synthesized via in situ miniemulsion polymerization in the presence of 3 and 6 wt % organically modified montmorillonite (OMMT). Three different ammonium salts: cetyl trimethyl ammonium chloride (CTAC), alkyl dimethyl benzyl ammonium chloride (Dodigen), and distearyl dimethyl ammonium chloride (Praepagen), were investigated as organic modifiers. Increased affinity for organic liquids was observed after organic modification of the MMT. Stable hybrid latices were obtained even though miniemulsion stability was disturbed to some extent by the presence of the OMMTs during the synthesis. Highly intercalated and exfoliated polymer-MMT nanocomposites films were produced with good MMT dispersion throughout the polymeric matrix. Materials containing MMT modified with the 16 carbons alkyl chain salt (CTAC) resulted in the largest increments of storage modulus, indicating that single chain quaternary salts provide higher increments on mechanical properties. Films presenting exfoliated structure resulted in the largest increments in the onset temperature of decomposition. For the range of OMMT loading studied, the nanocomposite structure influenced more significantly the thermal stability properties of the hybrid material than did the OMMT loading. The film containing 3 wt % MMT modified with the two 18 carbons alkyl chains salt (Praepagen) provided the highest increment of onset temperature of decomposition. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 3658-3669, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explain the magnetic behavior of plastic deformation of thin magnetic films (Fe and permalloy) on an elastic substrate (nitinol), it is noted that unlike in the bulk, the dislocation density does not increase dramatically because of the dimensional constraint. As a result, the resulting residual stress, even though strain hardening is limited, dominates the observed magnetic behavior. Thus, with the field parallel to the stress axis, the compressive residual stress resulting from plastic deformation causes a decrease in remanence and an increase in coercivity; and with the field perpendicular to the stress axis, the resulting compressive residual stress causes an increase in remanence and a decrease in coercivity. These elements have been inserted into the model previously developed for plastic deformation in the bulk, producing the aforementioned behavior, which has been observed experimentally in the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of Sri in Fe(2)O(3) thin films is addressed. The presence of the tin ions decreases the Fe(2)O(3) particle sizes and surface roughness decreasing of the films` surface is observed as a consequence. X-ray diffraction and atomic force microscopy measurements together with literature results support this phenomenon to be related to the segregation of the additive onto the surface and consequently surface energy decrease, which constitutes the driving force for the microstructure modification, similarly to results previously obtained for powders with same compositions. The effect of the anions introduced in the system as counter-ions of the precursors is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the stress relaxation behavior of PMMA/PS blends, with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition (ranging from 10 to 30 wt.% of dispersed phase), viscosity ratio (ranging from 0.1 to 7.5), and random copolymer addition (for concentrations up to 8 wt.% with respect to the dispersed phase) was evaluated and correlated to the evolution of the morphology of the blends. All blends presented three relaxation stages: a first fast relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of a plateau, and a third fast one. The relaxation was shown to be faster for less extended and smaller droplets and to be influenced by coalescence for blends with a dispersed phase concentration larger than 20 wt.%. The relaxation of the blend was strongly influenced by the matrix viscosity. The addition of random copolymer resulted in a slower relaxation of the droplets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti(6)Al(4)V thin films were grown by magnetron sputtering on a conventional austenitic stainless steel. Five deposition conditions varying both the deposition chamber pressure and the plasma power were studied. Highly textured thin films were obtained, their crystallite size (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behaviour of carbon steel coated with bis-[trimethoxysilylpropyl]amine (BTSPA) filled with silica nanoparticles in naturally aerated 0.1 mol L-1 NaCl solutions was evaluated. The coating was prepared by adding different concentrations of silica nanoparticles (100, 200, 300, 400 and 500 ppm) to the hydrolysis solution and then a second layer without silica nanoparticles was applied. The electrochemical behavior of the coated steel was evaluated by means of open-circuit potential (E-OC), electrochemical impedance spectroscopy (EIS) and polarization curves. Surface characterization was made by atomic force microscopy (AFM), and its hydrophobicity assessed by contact angle measurements. EIS diagrams have shown an improvement of the barrier properties of the silane layer with the silica addition, which was further improved on the bi-layer system. However, a dependence on the filler concentration was verified, and the best electrochemical response was obtained for samples modified with 300 ppm of silica nanoparticles. AFM images have shown a homogeneous distribution of the silica nanoparticles on the sample surface; however particles agglomeration was detected, which degraded the corrosion protection performance. The results were explained on the basis of the improvement of the barrier properties of the coating due to the filler addition and on the onset of defective regions on the more heavily filled coatings allowing easier electrolyte penetration. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this work is to study and relate electrical and optical properties of diamond-like carbon (DLC) thin films for applications in electronic devices. DLC films were deposited in a reactive RF magnetron sputtering system on p-type silicon and glass substrates. The target was a 99.9999% pure, 6 in. diameter graphite plate and methane was used as processing gas. Eight DLC films were produced for each substrate, varying deposition time, the reactor pressure between 5 mTorr and 10 mTorr while the RF power was applied at 13.56 MHz and varied between 100, 150, 200 and 250W. After deposition, the films were analyzed by I-V and C-V measurements (Cheng et al. (2004) [1]) in order to determine the electric resistivity, photo-current response and dielectric constant, optical transmittance, used to find the optical gap by the Tauc method; and by photoluminescence analysis to determine the photoemission and confirm the optical band gap. These characteristics are compared and the influence of the deposition parameters is discussed. (C) 2011 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have studied the influence of the substrate surface condition on the roughness and the structure of the nanostructured DLC films deposited by high-density plasma chemical vapor deposition Four methods were used to modify the silicon wafers surface before starting the deposition processes of the nanostructured DLC films. micro-diamond powder dispersion, micro-graphite powder dispersion, and roughness generation by wet chemical etching and roughness generation by plasma etching. The reference wafer was only submitted to a chemical cleaning. It was possible to see that the final roughness and the sp(3) hybridization degree (that is related with the structure and chemical composition) strongly depend on the substrate surface conditions The surface roughness was observed by AFM and SEM and the hybridization degree of the DLC films was analyzed by Raman Spectroscopy Thus, the effects of the substrate surface on the DLC film structure were confirmed. These phenomena can be explained by the fact that the locally higher surface energy and the sharp edges may induce local defects promoting the nanostructured characteristics in the DLC films. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have studied the influence of the substrate surface condition on the roughness and the structure of the nanostructured DLC films deposited by High Density Plasma Chemical Vapor Deposition. Four methods were used to modify the silicon wafers surface before starting the deposition processes of the nanostructured DLC films: micro-diamond powder dispersion, micro-graphite powder dispersion, and roughness generation by wet chemical etching and roughness generation by plasma etching. The reference wafer was only submitted to a chemical cleaning. It was possible to see that the final roughness and the sp(3) hybridization degree strongly depend on the substrate surface conditions. The surface roughness was observed by AFM and SEM and the hybridization degree of the DLC films was analyzed by Raman Spectroscopy. In these samples, the final roughness and the sp(3) hybridization quantity depend strongly on the substrate surface condition. Thus, the effects of the substrate surface on the DLC film structure were confirmed. These phenomena can be explained by the fact that the locally higher surface energy and the sharp edges may induce local defects promoting the nanostructured characteristics in the DLC films. (C) 2008 Elsevier B.V. All rights reserved.