986 resultados para polylysine hydrobromide modified cellulose film prepn
Resumo:
Cultural policy studies have previously highlighted the importance of multiple logics, friction and contradiction in cultural policy. Recent developments in institutional theory provide a framework for analysing change in cultural policy which explores movement between these multiple and sometimes contradictory logics. This paper analyses the role of friction in the evolution of Australian film industry policy and in particular the tension between competing logics regarding nationalism, commercialism and the state. The paper is suggestive of the relevance of institutional theory as a framework for understanding cultural policy evolution.
Resumo:
To enhance and regulate cell affinity for poly (l-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (l-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (l-lactide)-block-poly (l-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces.
Resumo:
-
Resumo:
-
Resumo:
Sandy soils have low water and nutrient retention capabilities so that zeolite soil amendments are used for high value land uses including turf and horticulture to reduce leaching losses of NH4+ fertilisers. MesoLite is a zeolitic material made by caustic treatment of kaolin at 80-95oC. It has a moderately low surface area (9-12m2/g) and very high cation exchange capacity (494 cmol(+)/kg). Laboratory column experiments showed that an addition of 0.4% MesoLite to a sandy soil greatly (90%) reduced leaching of added NH4+ compared to an unamended soil and MesoLite is 11 times more efficient in retaining NH4+ than natural zeolite. Furthermore, NH4+-MesoLite slowly releases NH4+ to soil solution and is likely to be an effective slow release fertiliser.
Resumo:
During the last decade many cities have sought to promote creativity as a driver for economic growth. They have done this by encouraging specific sectors of creative industries. This paper focuses on the film industry as one of these sectors which also has a high level of interaction with place. Film industry, has had an important role in incubating the creativity potential. It can be a powerful magnet for creative people, fostering indigenous creativity and attracting outside talent, and might thus contribute to the formation of creative cities. This recent research suggests that the film industry has positively effect on tourism by increasing place recognition through the locations used in films and for cities that host film festivals. Film festivals provide events, workshops and experiences that allow visitors to express themselves through interaction with the place and its living culture. This paper examines the importance of creative industries for both urban development and sustainable tourism. To explore the relation between creative tourism, culture and the film industry and its effect on successful tourism planning this paper presents the preliminary findings of case studies of the film industry in Beyo
Resumo:
In this paper, we consider a modified anomalous subdiffusion equation with a nonlinear source term for describing processes that become less anomalous as time progresses by the inclusion of a second fractional time derivative acting on the diffusion term. A new implicit difference method is constructed. The stability and convergence are discussed using a new energy method. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of theoretical analysis
Resumo:
In this paper, a two-dimensional non-continuous seepage flow with fractional derivatives (2D-NCSF-FD) in uniform media is considered, which has modified the well known Darcy law. Using the relationship between Riemann-Liouville and Grunwald-Letnikov fractional derivatives, two modified alternating direction methods: a modified alternating direction implicit Euler method and a modified Peaceman-Rachford method, are proposed for solving the 2D-NCSF-FD in uniform media. The stability and consistency, thus convergence of the two methods in a bounded domain are discussed. Finally, numerical results are given.
Resumo:
The Australian film industry is evolving. The days when government film agencies handed out millions of taxpayers' dollars for filmmakers to produce "Australian stories" with little regard to commercial returns are limited. If the Australian film industry is to reach mainstream audiences – and increase its relevance – then filmmakers need to take greater notice of genre movies and the possibilities they create within the financial restraints of the local industry. The $20 million Aussie vampire movie, Daybreakers, is a prototype for how this can be achieved.
Resumo:
Objectives. To evaluate the performance of the dynamic-area high-speed videokeratoscopy technique in the assessment of tear film surface quality with and without the presence of soft contact lenses on eye. Methods. Retrospective data from a tear film study using basic high-speed videokeratoscopy, captured at 25 frames per second, (Kopf et al., 2008, J Optom) were used. Eleven subjects had tear film analysis conducted in the morning, midday and evening on the first and seventh day of one week of no lens wear. Five of the eleven subjects then completed an extra week of hydrogel lens wear followed by a week of silicone hydrogel lens wear. Analysis was performed on a 6 second period of the inter-blink recording. The dynamic-area high-speed videokeratoscopy technique uses the maximum available area of Placido ring pattern reflected from the tear interface and eliminates regions of disturbance due to shadows from the eyelashes. A value of tear film surface quality was derived using image rocessing techniques, based on the quality of the reflected ring pattern orientation. Results. The group mean tear film surface quality and the standard deviations for each of the conditions (bare eye, hydrogel lens, and silicone hydrogel lens) showed a much lower coefficient of variation than previous methods (average reduction of about 92%). Bare eye measurements from the right and left eyes of eleven individuals showed high correlation values (Pearson’s correlation r = 0.73, p < 0.05). Repeated measures ANOVA across the 6 second period of measurement in the normal inter-blink period for the bare eye condition showed no statistically significant changes. However, across the 6 second inter-blink period with both contact lenses, statistically significant changes were observed (p < 0.001) for both types of contact lens material. Overall, wearing hydrogel and silicone hydrogel lenses caused the tear film surface quality to worsen compared with the bare eye condition (repeated measures ANOVA, p < 0.0001 for both hydrogel and silicone hydrogel). Conclusions. The results suggest that the dynamic-area method of high-speed videokeratoscopy was able to distinguish and quantify the subtle, but systematic worsening of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions.
Resumo:
A new method for noninvasive assessment of tear film surface quality (TFSQ) is proposed. The method is based on high-speed videokeratoscopy in which the corneal area for the analysis is dynamically estimated in a manner that removes videokeratoscopy interference from the shadows of eyelashes but not that related to the poor quality of the precorneal tear film that is of interest. The separation between the two types of seemingly similar videokeratoscopy interference is achieved by region-based classification in which the overall noise is first separated from the useful signal (unaltered videokeratoscopy pattern), followed by a dedicated interference classification algorithm that distinguishes between the two considered interferences. The proposed technique provides a much wider corneal area for the analysis of TFSQ than the previously reported techniques. A preliminary study with the proposed technique, carried out for a range of anterior eye conditions, showed an effective behavior in terms of noise to signal separation, interference classification, as well as consistent TFSQ results. Subsequently, the method proved to be able to not only discriminate between the bare eye and the lens on eye conditions but also to have the potential to discriminate between the two types of contact lenses.