921 resultados para physical and functional capacity
Resumo:
Improve the prediction of the vital and functional prognosis of comatose patients suffering from anoxic-ischemic encephalopathy after successful resuscitation from a cardiac arrest, addmitted to the Intensive Care and Coronary Units of the Dr. Josep Trueta Hospital, based on clinical, neurophysiological and biochemical results.The results of these different tests, revised and combined all together, will improve the prediction of the patients' prognosis, leading to an accurate vital and functional outcome, as they only have been studied separately so far. Anoxia is the third most frequent cause of coma, and the most common cause of post-anoxic coma in adults is the cardiac arrest. The incidence of hypoxic-ischemic brain injury is not well known, but it is certain that cardiac arrest, the most common cause of post-anoxic coma, affects approximately 24000 to 50000 Spanish people every year, most of them occuring out of the hospital. A cardiac arrest is the abrupt cessation of normal circulation of the blood due to failure of the heart to contract effectively during systole. It is different from, but may be caused by, a heart attack or myocardial infarction, where blood flow to the still-beating heart is interrupted. Arrested blood circulation prevents delivery of oxygen to all parts of the body. Cerebral hypoxia, or lack of oxygen supply to the brain, causes victims to lose consciousness and to stop normal breathing, although agonal breathing may still occur. Brain injury is likely if cardiac arrest is untreated for more than five minutes
Resumo:
An activated carbon was obtained by chemical activation with phosphoric acid, CM, from a mineral carbon. Afterwards, the carbon was modified with 2 and 5 molL-1, CMox2 and CMox5 nitric acid solutions to increase the surface acid group contents. Immersion enthalpy at pH 4 values and Pb2+ adsorption isotherms were determined by immersing activated carbons in aqueous solution. The surface area values of the adsorbents and total pore volume were approximately 560 m².g-1 and 0.36 cm³g-1, respectively. As regards chemical characteristics, activated carbons had higher acid sites content, 0.92-2.42 meq g-1, than basic sites, 0.63-0.12 meq g-1. pH values were between 7.4 and 4.5 at the point of zero charge, pH PZC. The adsorbed quantity of Pb2+ and the immersion enthalpy in solution of different pH values for CM activated carbon showed that the values are the highest for pH 4, 15.7 mgg-1 and 27.6 Jg-1 respectively. Pb2+ adsorption isotherms and immersion enthalpy were determined for modified activated carbons and the highest values were obtained for the activated carbon that showed the highest content of total acid sites on the surface.
Resumo:
Background: Atherosclerosis begins in early life progressing from asymptomatic to symptomatic as we age. Although substantial progress has been made in identifying the determinants of atherosclerosis in middle to older age adults at increased cardiovascular risk, there is lack of data examining determinants and prediction of atherosclerosis in young adults. Aims: The current study was designed to investigate levels of cardiovascular risk factors in young adults, subclinical measures of atherosclerosis, and prediction of subclinical arterial changes with conventional risk factor measures and novel metabolic profiling of serum samples. Subjects and Methods: This thesis utilised data from the follow-ups performed in 2001 and 2007 in the Cardiovascular Risk in Young Finns study, a Finnish population-based prospective cohort study that examined 2,204 subjects who were aged 30-45 years in 2007. Subclinical atherosclerosis was studied using noninvasive ultrasound measurements of carotid intima-media thickness (IMT), carotid arterial distensibility (CDist) and brachial flow-mediated dilation (FMD). Measurements included conventional risk factors and metabolic profiling using highthroughput nuclear magnetic resonance (NMR) methods that provided data on 42 lipid markers and 16 circulating metabolites. Results: Trends in lipids were favourable between 2001 and 2007, whereas waist circumference, fasting glucose, and blood pressure levels increased. To study the stability of noninvasive ultrasound markers, 6-year tracking (the likelihood to maintain the original fractile over time) in 6 years was examined. IMT tracked more strongly than CDist and FMD. Cardiovascular risk scores (Framingham, SCORE, Finrisk, Reynolds and PROCAM) predicted subclinical atherosclerosis equally. Lipoprotein subclass testing did not improve the prediction of subclinical atherosclerosis over and above conventional risk factors. However, circulating metabolites improved risk stratification. Tyrosine and docosahexaenoic acid were found to be novel biomarkers of high IMT. Conclusions: Prediction of cardiovascular risk in young Finnish adults can be performed with any of the existing risk scores. The addition of metabonomics to risk stratification improves prediction of subclinical changes and enables more accurate targeting of prevention at an early stage.
DPS-Like Peroxide Resistance Protein: Structural and Functional Studies on a Versatile Nanocontainer
Resumo:
Oxidative stress is a constant threat to almost all organisms. It damages a number of biomolecules and leads to the disruption of many crucial cellular functions. It is caused by reactive oxygen species (ROS), such as hydrogen peroxide (H
Resumo:
Banana is the most consumed fruit in the world and Brazil is the second largest producer. Despite its global position, Brazil has an average of 40% losses during the post-harvest period. So, this experiment aimed at evaluating the efficiency of post-harvest treatments to improve the storage of banana cultivars cv. 'Prata', 'Maçã' and 'Nanica'. The fruits were acquired at CEASA with green peel, and were submitted to six different treatments: T- immersion in drinking water for 3 minutes (control), H3 - hot water (50 °C for 3 minutes), H8 - hot water (50 °C for 8 minutes), HP - immersion in hypochlorite 0.2% for 3 minutes, OS - immersion in soybean oil 10% for 3 minutes, and OM - immersion in mineral oil 10% for 3 minutes. The fruits were stored at room temperature at about 21 °C for 14 days and evaluated in three periods (1, 7 and 14 days) comparing peel color, flesh/peel ratio, titratable acidity (TA), soluble solids (SS), SS/TA ratio, and pH. The fruits of cv. 'Prata' and 'Maçã' submitted to the treatments H3, H8 and HP ripened at the same time as the control for peel color, which showed increased soluble solids, flesh/peel ratio, acidity and a decrease in pH. On the other hand, the cv. 'Nanica' did not respond significantly different when compared to the applied treatments and the control. The fruits treated with OM and OS were kept green for a longer time for the cultivars 'Prata' and 'Nanica', but there were some changes on peel color due dark spots in 'Prata' banana and a softening aspect in 'Nanica', indicating some level of toxicity of these treatments. Fruits of the 'Maçã' cultivar continued green with the application of mineral oil, without toxicity symptoms. In conclusion, the treatments applied did not show any advantage for storage of these fruits.
Resumo:
ABSTRACT Precision agriculture adoption in Brazilian apple orchards is still incipient. This study aimed at evaluating the spatial variability of certain soil properties as soil density, soil penetration resistance, electrical conductivity, yield, and fruit quality in an apple orchard through digital mapping, as well as assessing the correlation between these factors by means of geostatistics, establishing management zones. Forty representative points were set within 2.5 hectares of apple orchard, wherein soil samples were collected and analyzed, besides measurements of fruit quality (Brix degree, size or diameter, pulp firmness and color) to generate an overall index quality. We concluded that the fruit quality indexes, when isolated, did not show strong spatial dependence, unlike the index of fruit quality (FQI), derived from a combination of these parameters, allowing orchard planning according to management zones based on quality.
Resumo:
Hen eggs and oats (Avena Sativa) are important materials for the food industry. Today, instead of merely satisfying the feeling of hunger, consumers are asking for healthier, biologically active and environmentally friendly products. The growing awareness of consumers’ increasing demands presents a great challenge to the food industry to develop more sustainable products and utilise modern and effective techniques. The modification of yolk fatty acid composition by means of feed supplements is well understood. Egg yolk phospholipids are polar lipids and are used in several applications including food, cosmetics, pharmaceuticals, and special nutrients. Egg yolk phospholipids are excellent emulsifiers, typically sold as mixtures of phospholipids, triacylglycerols, and cholesterol. However, highly purified and characterised phospholipids are needed in several sophisticated applications. Industrial fractionation of phospholipids is usually based on organic solvents. With these fractionation techniques, some harmful residues of organic solvents may cause problems in further processing. The objective of the present study was to investigate the methods to improve the functional properties of eggs, to develop techniques to isolate the fractions responsible for the specific functional properties of egg yolk lipids, and to apply the developed techniques to plant-based materials, too. Fractionation techniques based on supercritical fluids were utilised for the separation of the lipid fractions of eggs and oats. The chemical and functional characterisation of the fractions were performed, and the produced oat polar lipid fractions were tested as protective barrier in encapsulation processes. Modifying the fatty acid compositions of egg yolks with different types of oil supplements in feed had no affect on their functional or sensory properties. Based on the results of functional and sensory analysis, it is evident that eggs with modified fatty acid compositions are usable in several industrial applications. These applications include liquid egg yolk products used in mayonnaise and salad dressings. Egg yolk powders were utilised in different kinds of fractionation processes. The precipitation method developed in this study resembles the supercritical anti-solvent method, which is typically used in the pharmaceutical industry. With pilot scale supercritical fluid processes, non-polar lipids and polar lipids were successfully separated from commercially produced egg yolk powder and oat flakes. The egg and oat-based polar lipid fractions showed high purities, and the corresponding delipidated fractions produced using supercritical techniques offer interesting starting materials for the further production of bioactive compounds. The oat polar lipid fraction contained especially digalactosyadiacylglycerol, which was shown to have valuable functional properties in the encapsulation of probiotics.
Resumo:
PURPOSE: To determine anatomical and functional pelvic floor measurements performed with three-dimensional (3-D) endovaginal ultrasonography in asymptomatic nulliparous women without dysfunctions detected in previous dynamic 3-D anorectal ultrasonography (echo defecography) and to demonstrate the interobserver reliability of these measurements. METHODS: Asymptomatic nulliparous volunteers were submitted to echo defecography to identify dynamic dysfunctions, including anatomical (rectocele, intussusceptions, entero/sigmoidocele and perineal descent) and functional changes (non-relaxation or paradoxical contraction of the puborectalis muscle) in the posterior compartment and assessed with regard to the biometric index of levator hiatus, pubovisceral muscle thickness, urethral length, anorectal angle, anorectal junction position and bladder neck position with the 3-D endovaginal ultrasonography. All measurements were compared at rest and during the Valsalva maneuver, and perineal and bladder neck descent was determined. The level of interobserver agreement was evaluated for all measurements. RESULTS: A total of 34 volunteers were assessed by echo defecography and by 3-D endovaginal ultrasonography. Out of these, 20 subjects met the inclusion criteria. The 14 excluded subjects were found to have posterior dynamic dysfunctions. During the Valsalva maneuver, the hiatal area was significantly larger, the urethra was significantly shorter and the anorectal angle was greater. Measurements at rest and during the Valsalva maneuver differed significantly with regard to anorectal junction and bladder neck position. The mean values for normal perineal descent and bladder neck descent were 0.6 cm and 0.5 cm above the symphysis pubis, respectively. The intraclass correlation coefficient ranged from 0.62-0.93. CONCLUSIONS: Functional biometric indexes, normal perineal descent and bladder neck descent values were determined for young asymptomatic nulliparous women with the 3-D endovaginal ultrasonography. The method was found to be reliable to measure pelvic floor structures at rest and during Valsalva, and might therefore be suitable for identifying dysfunctions in symptomatic patients.
Resumo:
Brazil has high climate, soil and environmental diversity, as well as distinct socioeconomic and political realities, what results in differences among the political administrative regions of the country. The objective of this study was to determine spatial distribution of the physical, climatic and socioeconomic aspects that best characterize the production of dairy goats in Brazil. Production indices of milk per goat, goat production, milk production, as well as temperature range, mean temperature, precipitation, normalized difference vegetation index, relative humidity, altitude, agricultural farms; farms with native pasture, farms with good quality pasture, farms with water resources, farms that receive technical guidance, family farming properties, non-familiar farms and the human development index were evaluated. The multivariate analyses were carried out to spatialize climatic, physical and socioeconomic variables and so differenciate the Brazilian States and Regions. The highest yields of milk and goat production were observed in the Northeast. The Southeast Region had the second highest production of milk, followed by the South, Midwest and North. Multivariate analysis revealed distinctions between clusters of political-administrative regions of Brazil. The climatic variables were most important to discriminate between regions of Brazil. Therefore, it is necessary to implement animal breeding programs to meet the needs of each region.
Resumo:
Protein engineering aims to improve the properties of enzymes and affinity reagents by genetic changes. Typical engineered properties are affinity, specificity, stability, expression, and solubility. Because proteins are complex biomolecules, the effects of specific genetic changes are seldom predictable. Consequently, a popular strategy in protein engineering is to create a library of genetic variants of the target molecule, and render the population in a selection process to sort the variants by the desired property. This technique, called directed evolution, is a central tool for trimming protein-based products used in a wide range of applications from laundry detergents to anti-cancer drugs. New methods are continuously needed to generate larger gene repertoires and compatible selection platforms to shorten the development timeline for new biochemicals. In the first study of this thesis, primer extension mutagenesis was revisited to establish higher quality gene variant libraries in Escherichia coli cells. In the second study, recombination was explored as a method to expand the number of screenable enzyme variants. A selection platform was developed to improve antigen binding fragment (Fab) display on filamentous phages in the third article and, in the fourth study, novel design concepts were tested by two differentially randomized recombinant antibody libraries. Finally, in the last study, the performance of the same antibody repertoire was compared in phage display selections as a genetic fusion to different phage capsid proteins and in different antibody formats, Fab vs. single chain variable fragment (ScFv), in order to find out the most suitable display platform for the library at hand. As a result of the studies, a novel gene library construction method, termed selective rolling circle amplification (sRCA), was developed. The method increases mutagenesis frequency close to 100% in the final library and the number of transformants over 100-fold compared to traditional primer extension mutagenesis. In the second study, Cre/loxP recombination was found to be an appropriate tool to resolve the DNA concatemer resulting from error-prone RCA (epRCA) mutagenesis into monomeric circular DNA units for higher efficiency transformation into E. coli. Library selections against antigens of various size in the fourth study demonstrated that diversity placed closer to the antigen binding site of antibodies supports generation of antibodies against haptens and peptides, whereas diversity at more peripheral locations is better suited for targeting proteins. The conclusion from a comparison of the display formats was that truncated capsid protein three (p3Δ) of filamentous phage was superior to the full-length p3 and protein nine (p9) in obtaining a high number of uniquely specific clones. Especially for digoxigenin, a difficult hapten target, the antibody repertoire as ScFv-p3Δ provided the clones with the highest affinity for binding. This thesis on the construction, design, and selection of gene variant libraries contributes to the practical know-how in directed evolution and contains useful information for scientists in the field to support their undertakings.
Resumo:
Surface chemistry is of great importance in plant biomass engineering and applications. The surface chemical composition of biomass which includes lignin, carbohydrates and extractives influences its interactions with chemical agents, such as pulp processing/papermaking chemicals, or enzymes for different purposes. In this thesis, the changes in the surface chemical composition of lignocellulosic biomass after physical modification for the improvement of resulting paper properties and chemical treatment for the enhancement of enzymatic hydrolysis were investigated. Low consistency (LC) refining was used as physical treatment of bleached softwood and hardwood pulp samples, and the surface chemistry of refined samples was investigated. The refined pulp was analysed as whole pulp while the fines-free fibre samples were characterized separately. The fines produced in LCrefining contributed to an enlarged surface specific area as well as the change of surface coverage by lignin and extractives, as investigated by X-ray photoelectron spectroscopy (XPS). The surface coverage by lignin of the whole pulp decreased after refining while the surface coverage by extractives increased both for pine and eucalyptus. In the case of pine, the removal of fines resulted in reduction of the surface coverage by extractives, while the surface coverage by lignin increased on fibre sample (without fines). In the case of eucalyptus, the surface coverage by lignin of fibre samples decreased after the removal of fines. In addition, the surface distribution of carbohydrates, lignin and extractives of pine and eucalyptus samples was determined by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). LC-refining increased the amounts of pentose, hexose and extractives on the surface of pine samples. ToF-SIMS also gave clear evidence about xylan deposition and reduction of surface lignin distribution on the fibre of eucalyptus. However, the changes in the surface chemical composition during the physical treatment has led to an increase in the adsorption of fluorescent whitening agents (FWAs) on fibres due to a combination of electro-static forces, specific surface area of fibres and hydrophobic interactions. Various physicochemical pretreatments were conducted on wood and non-wood biomass for enhancing enzymatic hydrolysis of polysaccharides, and the surface chemistry of the pretreated and enzymatically hydrolysed samples was investigated by field emission scanning electron microscopy (FE-SEM), XPS and ToF-SIMS. A hydrotrope was used as a relatively novel pretreatment technology both in the case of wood and non-wood biomass. For comparison, ionic liquid and hydrothermal pretreatments were applied on softwood and hardwood as well. Thus, XPS analysis showed that the surface lignin was more efficiently removed by hydrotropic pretreatment compared to ionic liquid or hydrothermal pretreatments. SEM analysis also found that already at room temperature the ionic liquid pretreatments were more effective in swelling the fibres compared with hydrotropic pretreatment at elevated temperatures. The enzymatic hydrolysis yield of hardwood was enhanced due to the decrease in surface coverage of lignin, which was induced by hydrotropic treatment. However, hydrotropic pretreatment was not appropriate for softwood because of the predominance of guaiacyl lignin structure in this material. In addition, the reduction of surface lignin and xylan during pretreatment and subsequent increase in cellulose hydrolysis by enzyme could be observed from ToF-SIMS results. The characterisation of the non-wood biomass (e.g. sugarcane bagasse and common reed) treated by hydrotropic method, alkaline and alkaline hydrogen peroxide pretreatments were carried out by XPS and ToF-SIMS. According to the results, the action for the removal of the surface lignin of non-wood biomass by hydrotropic pretreatment was more significant compared to alkaline and alkaline hydrogen peroxide pretreatments, although a higher total amount of lignin could be removed by alkaline and alkaline hydrogen peroxide pretreatment. Furthermore, xylan could be remarkably more efficiently removed by hydrotropic method. Therefore, the glucan yield achieved from hydrotropic treated sample was higher than that from samples treated with alkaline or alkaline hydrogen peroxide. Through the use of ToF-SIMS, the distribution and localization of lignin and carbohydrates on the surface of ignocelluloses during pretreatment and enzymatic hydrolysis could be detected, and xylan degradation during enzymatic hydrolysis could also be assessed. Thus, based on the results from XPS and ToF-SIMS, the mechanism of the hydrotropic pretreatment in improving the accessibility of enzymes to fibre and further ameliorating of the enzymatic saccharification could be better elucidated.
Resumo:
A study was conducted to evaluate the sorption and desorption of 14C herbicide saflufenacil (pyrimidinedione) in two soils in the State of São Paulo, classified as Red Yellow Latosol with clayey texture (LVA-1) and medium texture (LVA-2), using the batch method through isotherms. The soils were air dried and sieved a 2 mm mesh. The radioactivity was determined by liquid scintillation spectrometry in acclimatized room (25 ± 2 °C). Sorption isotherms were conducted for 5 concentrations of saflufenacil (5.0; 2.5; 1.0; 0.5 and 0.05 μg mL-1) and the results were adjusted to the Freundlich equation, thus obtaining the parameters of sorption followed by two extractions with 0.01 M CaCl2 to determine desorption parameters similarly to sorption. The results showed that saflufenacil sorption was low for both soils studied, being greater for the LVA with higher organic matter content. The desorption coefficients were greater than their sorption coefficients, suggesting the occurrence of hysteresis. The sorption and desorption isotherms (classified as type C isotherms), hysteresis and the t-test between the angular coefficient of the respective isotherms showed that both the sorption and desorption occur with equal intensity.
Resumo:
Cyanide-resistant alternative oxidase (AOX) is not limited to plant mitochondria and is widespread among several types of protists. The uncoupling protein (UCP) is much more widespread than previously believed, not only in tissues of higher animals but also in plants and in an amoeboid protozoan. The redox energy-dissipating pathway (AOX) and the proton electrochemical gradient energy-dissipating pathway (UCP) lead to the same final effect, i.e., a decrease in ATP synthesis and an increase in heat production. Studies with green tomato fruit mitochondria show that both proteins are present simultaneously in the membrane. This raises the question of a specific physiological role for each energy-dissipating system and of a possible functional connection between them (shared regulation). Linoleic acid, an abundant free fatty acid in plants which activates UCP, strongly inhibits cyanide-resistant respiration mediated by AOX. Moreover, studies of the evolution of AOX and UCP protein expression and of their activities during post-harvest ripening of tomato fruit show that AOX and plant UCP work sequentially: AOX activity decreases in early post-growing stages and UCP activity is decreased in late ripening stages. Electron partitioning between the alternative oxidase and the cytochrome pathway as well as H+ gradient partitioning between ATP synthase and UCP can be evaluated by the ADP/O method. This method facilitates description of the kinetics of energy-dissipating pathways and of ATP synthase when state 3 respiration is decreased by limitation of oxidizable substrate.
Evaluation of radioinduced damage and repair capacity in blood lymphocytes of breast cancer patients
Resumo:
Genetic damage caused by ionizing radiation and repair capacity of blood lymphocytes from 3 breast cancer patients and 3 healthy donors were investigated using the comet assay. The comets were analyzed by two parameters: comet tail length and visual classification. Blood samples from the donors were irradiated in vitro with a 60Co source at a dose rate of 0.722 Gy/min, with a dose range of 0.2 to 4.0 Gy and analyzed immediately after the procedure and 3 and 24 h later. The basal level of damage and the radioinduced damage were higher in lymphocytes from breast cancer patients than in lymphocytes from healthy donors. The radioinduced damage showed that the two groups had a similar response when analyzed immediately after the irradiations. Therefore, while the healthy donors presented a considerable reduction of damage after 3 h, the patients had a higher residual damage even 24 h after exposure. The repair capacity of blood lymphocytes from the patients was slower than that of lymphocytes from healthy donors. The possible influence of age, disease stage and mutations in the BRCA1 and BRCA2 genes are discussed. Both parameters adopted proved to be sensitive and reproducible: the dose-response curves for DNA migration can be used not only for the analysis of cellular response but also for monitoring therapeutic interventions. Lymphocytes from the breast cancer patients presented an initial radiosensitivity similar to that of healthy subjects but a deficient repair mechanism made them more vulnerable to the genotoxic action of ionizing radiation. However, since lymphocytes from only 3 patients and 3 normal subjects were analyzed in the present paper, additional donors will be necessary for a more accurate evaluation.
Resumo:
The recently cloned extracellular calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays an essential role in the regulation of extracellular calcium homeostasis. This receptor is expressed in all tissues related to this control (parathyroid glands, thyroid C-cells, kidneys, intestine and bones) and also in tissues with apparently no role in the maintenance of extracellular calcium levels, such as brain, skin and pancreas. The CaR amino acid sequence is compatible with three major domains: a long and hydrophilic aminoterminal extracellular domain, where most of the activating and inactivating mutations described to date are located and where the dimerization process occurs, and the agonist-binding site is located, a hydrophobic transmembrane domain involved in the signal transduction mechanism from the extracellular domain to its respective G protein, and a carboxyterminal intracellular tail, with a well-established role for cell surface CaR expression and for signal transduction. CaR cloning was immediately followed by the association of genetic human diseases with inactivating and activating CaR mutations: familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism are caused by CaR-inactivating mutations, whereas autosomal dominant hypoparathyroidism is secondary to CaR-activating mutations. Finally, we will comment on the development of drugs that modulate CaR function by either activating (calcimimetic drugs) or antagonizing it (calcilytic drugs), and on their potential therapeutic implications, such as medical control of specific cases of primary and uremic hyperparathyroidism with calcimimetic drugs and a potential treatment for osteoporosis with a calcilytic drug.