962 resultados para photoredox catalysis
Resumo:
This study explores the similarities between solid and liquid acid catalysts highlighting the advantages and the main challenges of heterogeneous catalytic processes. We describe the main developments in technical procedures like selection of compounds and reaction models involved in: increasing acidity, characterization of solid acidity and in coke formation.
Resumo:
In this work it is proposed a simple and versatile undergraduate chemical experiment in polymer and environmental technology based on the process of polyethylene terephthalate (PET) hydrolysis. Polyethylene terephthalate from post-consume bottles is submitted to a controlled partial hydrolysis which allows the students to follow the reaction by a simple procedure. The students can explore the reaction kinetics, the effect of catalysts and the exposed polyethylene terephthalate surface area on the hydrolysis reaction. The second and innovative part of this experiment is the technological and environmental application of the hydrolyzed polyethylene terephthalate as a material with cation exchange properties. The surface hydrolyzed polyethylene terephthalate can be used as adsorbent for cationic contaminants.
Resumo:
In recent years nanomaterials, such as metallic nanoparticles, nanowires, nanotapes, nanotubes and nanocomposites, have attracted increasing interest for several technological applications. In catalysis, the great potential of nanomaterials is related to the high catalytic activity exhibited by these materials as a function of the high surface/volume ratio when the particles acquire diameter below 5 nm. In this work, a review about concepts and background of nanoscience and nanotechnology is presented with emphasis in catalysis. Special attention is given to gold nanoparticles and carbon nanotubes, focusing the properties and characteristics of these materials in several catalytic reactions.
Resumo:
Starting from zero-, first-, and second-order integrated laws for chemical kinetics, some cases are shown which produce fractional orders. Taking the Michaelis-Menten mechanism as a first example, it is shown that substrate order can go from 1 to zero, depending on relative concentration of enzyme and substrate. Using other examples which show fractional orders higher than one and even negative (inhibition), it is shown that the presence of an equilibrium before or parallel to the rate determining step can be the reason for fractional orders, which is an indication of a more complex mechanism.
Resumo:
The Michaelis-Menten equation is used in many biochemical and bioinorganic kinetic studies involving homogeneous catalysis. Otherwise, it is known that determination of Michaelis-Menten parameters K M, Vmax, and k cat by the well-known Lineweaver-Burk double reciprocal linear equation does not produce the best values for these parameters. In this paper we present a discussion on different linear equations which can be used to calculate these parameters and we compare their results with the values obtained by the more reliable nonlinear least-square fit.
Resumo:
The objective of this work is to show the results of the in situ transesterification of sunflower seed oil with methanol on basic homogeneous and heterogeneous catalysis for the production of biodiesel. In homogeneous catalysis, the activity of KOH and K2CO3 were evaluated using the same oil:methanol ratio of 1:90. KOH showed to be more active than K2CO3, leading to total conversion in biodiesel after 1h reaction time. In the heterogeneous catalysis the activity of K2CO3/Al2O3 was comparable to the activity of K2CO3 bulk: 53.0 and 66.6% resp. The properties of samples of biodiesel produced by homogeneous and heterogeneous catalysis were evaluated and are in accordance with the recommended fuel properties.
Resumo:
The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.
Resumo:
This review article shows the publications in the field of microwave irradiation published by Brazilian researchers over the past 10 years. In South America, Brazil leads the publication of articles with the use of microwave irradiation possessing a large advantage in number of articles published over the others countries. The works were divided into four major areas: Catalysis, Reactions without Solvent, Heterocycles Chemistry, Natural Products and Other, and some could be classified in more than one category.
Resumo:
The inadequacy of strategies used for the heterogeneization of metallocene catalysts is pointed out as one of the main causes of the lack of industrial employability of such polymerization catalysts. The main problems are the necessity of large quantity of MAO (cocatalyst) and the inability to control molecular mass distribution of the polymers. Based on this background, the main strategies for the heterogeneization of metallocenes are here reviewed. The advantages and disadvantages of each strategy are presented and discussed on theoretical and practical perspective. Considering the results reported on the different researches, outcomes of heterogeneization strategies are pointed out.
Resumo:
CeO2 and mixed CeO2-ZrO2 nanopowders were synthesized and efficiently deposited onto cordierite substrates, with the evaluation of their morphologic and structural properties through XRD, SEM, and FTIR. The modified substrates were employed as outer heterogeneous catalysts for reducing the soot originated from the diesel and diesel/biodiesel blends incomplete combustion. Their activity was evaluated in a diesel stationary motor, and a comparative analysis of the soot emission was carried out through diffuse reflectance spectroscopy. The analyses have shown that the catalyst-impregnated cordierite samples are very efficient for soot oxidation, being capable of reducing the soot emission in more than 60%.
Resumo:
In this work sulfated zirconia (SZr) and activated carbon/SZr composites produced by impregnation method with or without heating treatment step (CABC/SZr-I and CABC/SZr-I SC) and by the method of synthesis of SZr on the carbon (CABC/SZr-S) was used as catalysts in the esterification reactions of fatty acids. The SZr presented very active, conversions higher than 90% were obtained after 2 h of reaction. The activity of the composite CABC/SZr-I20%SC was up to 92%, however, this was directly related to time and temperature reactions. CABC/SZr-I and CABC/SZr-S were less active in esterification reactions, what could be attributed to its low acidity
Resumo:
Zeolite-encapsulated complexes have been widely applied in hydrocarbon oxidation catalysis. The "ship-in-a-bottle" encapsulation of iron(III) complexes containing piperazine and piperazine-derivative ligands in zeolite-Y is described. The flexible ligand methodology was employed and the efficiency and reproducibility of the procedure was investigated. The catalysts were characterized employing several techniques and the results indicate the presence of coordinated and uncoordinated iron(III) ions inside and outside the zeolitic cage.
Resumo:
This paper compares the catalytic activities of some transition metal ions (Fe3+, Co2+, Cu2+, Ni2+, Zn2+) in the H2O2 decomposition in homogenous and heterogeneous processes, including solid mixed systems (Fe-Cu-Co/Al2O3, Fe-Cu/Al2O3, Fe-Co/Al2O3 and Co-Cu/Al2O3). The solids were characterised by X-ray diffraction to explore evolution of phases or possible changes. Different trends of the catalytic activity were observed: in homogeneous medium the most active species was Fe3+, whereas in heterogeneous one the higher activities were shown for Co/Al2O3 and Co-Cu/Al2O3. A strong cooperative effect for the Co-Cu/Al2O3 system was observed, which can be considered as a new catalyst of interest for this type of reactions.
Resumo:
This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H2O2, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy.
Resumo:
A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more specifically hematite (α-Fe2O3), goethite (α-FeOOH), magnetite (Fe3O4) and maghemite (γ-Fe2O3), in heterogeneous catalysis.