752 resultados para pharmaceutical engineering
Resumo:
Fast development in the operating environment and fierce competition have driven companies to pursue efficiency and success through lean and global supply chains. At the same time overall uncertainty has increased in the business environment and supply chains have become a priority in risk management since their vulnerability may endanger business continuity. Although risk management should start at procurement strategy development phase, proactive contingency planning is also essential because it enables correct reaction and fast changes in process execution in the case of risk realization. This thesis is a case study conducted in the pharmaceutical industry where purchasing and materials management organizations face a number of challenges and limitations that have to be considered in supply risk management. The goal of the study was to discuss the operating environment, and identify and analyze supply risks and potential risk management practices. The study was concluded with suggestions for purchasing strategy development that take risk management considerations into account. This copy is the public version of the thesis.
Resumo:
This paper presents a methodology to determine the parameters used in the simulation of delamination in composite materials using decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is proposed. The procedure ensures that the energy dissipated by the fracture process is correctly computed. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used in the simulation of fracture processes
Resumo:
Aiheen laajempi artikkeli on julkaistu konferenssi-CD:llä.
Resumo:
Two spectrophotometric methods are described for the simultaneous determination of ezetimibe (EZE) and simvastatin (SIM) in pharmaceutical preparations. The obtained data was evaluated by using two different chemometric techniques, Principal Component Regression (PCR) and Partial Least-Squares (PLS-1). In these techniques, the concentration data matrix was prepared by using the mixtures containing these drugs in methanol. The absorbance data matrix corresponding to the concentration data matrix was obtained by the measurements of absorbances in the range of 240 - 300 nm in the intervals with Δλ = 1 nm at 61 wavelengths in their zero order spectra, then, calibration or regression was obtained by using the absorbance data matrix and concentration data matrix for the prediction of the unknown concentrations of EZE and SIM in their mixture. The procedure did not require any separation step. The linear range was found to be 5 - 20 µg mL-1 for EZE and SIM in both methods. The accuracy and precision of the methods were assessed. These methods were successfully applied to a pharmaceutical preparation, tablet; and the results were compared with each other.
Resumo:
A simple, fast and sensitive spectrophotometric method for the determination of cefaclor in pharmaceutical raw and dosage forms based on reaction with ninhydrin is developed, optimized and validated. The purple color (Ruhemenn's purple) that resulted from the reaction was stabilized and measured at 560 nm. Beer's law is obeyed in the concentration range of 4-80 µg mL-1 with molar absorptivity of 1.42 × 10(5) L mole-1 cm-1. All variables including the reagent concentration, heating time, reaction temperature, color stability period, and cefaclor/ninhydrin ratio were studied in order to optimize the reaction conditions. No interference was observed from common pharmaceutical adjuvant. The developed method is easy to use, accurate and highly cost-effective for routine studies relative to HPLC and other techniques.
Resumo:
A flow-injection (FI) spectrophotometric procedure is proposed for tetracycline (TC) and doxycycline (DXC) determination in pharmaceuticals. The method is based on the reaction of oxidation of these drugs by chloramine-T in alkaline medium producing red color products (λmax = 535 and 525 nm). Beer´s law is obeyed in the concentration range from 6.62 x 10-5 to 7.72 x 10-4 mol L-1 and 5.37 x 10-5 to 7.16 x 10-4 mol L-1 for TC and DXC, respectively. The analytical frequency was 50 h"1 and 45 h-1 for TC and DXC, respectively. The results obtained by the proposed method were in good agreement with those obtained by the official method at 95% confidence level.
Resumo:
A gas chromatographic method has been developed for the assay of fluvastatin sodium (FLU). FLU was silylated with N,O-bis(trimethylsilyl)trifluoroacetamide-1% trimethylchlorosilane at 90 ºC for 30 min and analysed in a DB-1 column by capillary gas chromatograph with a flame ionization detector. The method was validated. The assay was linear over the concentration range at 10.0 to 50.0 µg mL-1. The limit of detection and the limit of quantitation were 1.0 and 3.0 µg mL-1, respectively. The recoveries of FLU derivatives were in the range of 99.25-99.80%. In inter-day and intra-day analysis, the values of relative standard deviation (%) and the relative mean error (%) were found between 0.20-0.80% and -0.20-0.75%, respectively. The developed method was succesfully applied to analyze the FLU content in tablet formulation. The results were statistically compared with those obtained by the official method, and no significant difference was found between the two methods. Therefore, it can be recommended for the quality control assay of FLU in pharmaceutical industry.
Resumo:
This work describes the development and validation of a dissolution test for 50 mg losartan potassium capsules using HPLC and UV spectrophotometry. A 2(4) full factorial design was carried out to optimize dissolution conditions and potassium phosphate buffer, pH 6.8 as dissolution medium, basket as apparatus at the stirring speed of 50 rpm and time of 30 min were considered adequate. Both dissolution procedure and analytical methods were validated and a statistical analysis showed that there are no significant differences between HPLC and spectrophotometry. Since there is no official monograph, this dissolution test could be applied for quality control routine.
Resumo:
A flow injection method for the quantitative analysis of ketoconazole in tablets, based on the reaction with iron (III) ions, is presented. Ketoconazole forms a red complex with iron ions in an acid medium, with maximum absorbance at 495 nm. The detection limit was estimated to be 1×10--4 mol L-1; the quantitation limit is about 3×10--4 mol L-1 and approximately 30 determinations can be performed in an hour. The results were compared with those obtained with a reference HPLC method. Statistical comparisons were done using the Student's t procedure and the F test. Complete agreement was found at the 0.95 significance level between the proposed flow injection and the HPLC procedures. The two methods present similar precision, i.e., for HPLC the mean relative standard deviation was ca. 1.2% and for FIA ca. 1.6%.
Resumo:
A rapid, economical, reproducible, and simple direct spectrophotometric method was developed and validated for the assay of nitazoxanide in pharmaceutical formulations. Nitazoxanide concentration was estimated in water at 345 nm and pH 4.5. The method was suitable and validated for specificity, linearity, precision, and accuracy. There was no interference of the excipients in the determination of the active pharmaceutical ingredient. The proposed method was successfully applied in the determination of nitazoxanide in coated tablets and in powders for oral suspension. This method was compared to a previously developed and validated method for liquid chromatography to the same drug. There was no significative difference between these methods for nitazoxanide quantitation.
Resumo:
An analytical method for the determination of the anti-inflammatory drug 5-aminosalicylic acid (5-ASA) in pharmaceutical formulations using square wave voltammetry at pencil graphite electrodes was developed. After the optimization of the experimental conditions, calibration curves were obtained in the linear concentration range from 9.78 × 10-7 to 7.25 × 10-5 mol L-1 resulting in a limit of detection of 2.12 ± 0.05 x 10-8 mol L-1. Statistical tests showed that the concentrations of 5-ASA in commercial tablets and enemas obtained with the proposed voltammetric method agreed with HPLC values at a 95% confidence level.
Resumo:
The objective of this research was to develop and validate an alternative analytical method for quantitative determination of levofloxacin in tablets and injection preparations. The calibration curves were linear over a concentration range from 3.0 to 8.0 μg mL-1. The relative standard deviation was below 1.0% for both formulations and average recovery was 101.42 ± 0.45% and 100.34 ± 0.85% for tablets and injection formulations, respectively. The limit of detection and limit of quantitation were 0.08 and 0.25 μg mL-1, respectively. It was concluded that the developed method is suitable for the quality control of levofloxacin in pharmaceuticals formulations.
Resumo:
A sensitive RP-HPLC method with UV detection successfully measured phenol(s) in an ointment containing 3% Stryphnodendron adstringens extract. Chromatography used acetonitrile (0.05% trifluoroacetic acid):water (0.05% trifluoroacetic acid) (v/v), flow rate 0.8 mL min-1. Quantitation was accomplished by the external-standard method. Linearity for 2.00 to 16.00 μg mL-1 (gallic acid) and 1.14 to 18.24 μg mL-1 (gallocatechin) was established. Intra- and inter-day precision levels were under 5%. LOD and LOQ were 0.231 and 0.770 μg mL-1 (gallic acid) and 0.151 and 0.504 μg mL-1 (gallocatechin), respectively. Determination of phenols was unaffected by product excipients.
Resumo:
An isocratic reversed phase high-performance liquid chromatographic (RP-HPLC) method has been developed for the simultaneous determination of gemifloxacin and diuretics (hydrochlorothiazide and furosemide) in bulk, dosage formulations and human serum at 232 nm. Chromatographic separation was achieved on Purospher Start C18 (250 mm x 4.6 mm, 5 µm) column using mobile phase, methanol: water: acetonitrile (70:25:5 v/v/v) adjusted to pH 3.0 via phosphoric acid 85% having flow rate of 0.8 mL min -1 at room temperature. Calibration curves were linear over range of 0.5-10 µg mL -1 with a correlation coefficient ± 0.999. LOD and LOQ were in the ranges of 0.75-2.56 µg mL -1. Intra and inter-run precision and accuracy results were 98.26 to 100.9.
Resumo:
A simple liquid chromatographic method was optimized for the quantitative determination of terbinafine in pharmaceutical hydroalcoholic solutions and tablets, and was also employed for a tablet dissolution test. The analysis was carried out using a RP-C18 (250 mm × 4.6 mm, 5 μm) Vertical® column, UV-Vis detection at 254 nm, and a methanol-water (95:5, v/v) mobile phase at a flow-rate of 1.2 mL min-1. Method validation investigated parameters such as linearity, precision, accuracy, robustness and specificity, which gave results within the acceptable range. The tablets dissolution was quite fast: 80% of the drug was dissolved within 15 min.