949 resultados para optimization, heuristic, solver, operations, research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factor analysis was used to develop a more detailed description of the human hand to be used in the creation of glove sizes; currently gloves sizes are small, medium, and large. The created glove sizes provide glove designers with the ability to create a glove design that can provide fit to the majority of hand variations in both the male and female populations. The research used the American National Survey (ANSUR) data that was collected in 1988. This data contains eighty-six length, width, height, and circumference measurements of the human hand for one thousand male subjects and thirteen hundred female subjects. Eliminating redundant measurements reduced the data to forty-six essential measurements. Factor analysis grouped the variables to form three factors. The factors were used to generate hand sizes by using percentiles along each factor axis. Two different sizing systems were created. The first system contains 125 sizes for male and female. The second system contains 7 sizes for males and 14 sizes for females. The sizing systems were compared to another hand sizing system that was created using the ANSUR database indicating that the systems created using factor analysis provide better fit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Product miniaturization for applications in fields such as biotechnology, medical devices, aerospace, optics and communications has made the advancement of micromachining techniques essential. Machining of hard and brittle materials such as ceramics, glass and silicon is a formidable task. Rotary ultrasonic machining (RUM) is capable of machining these materials. RUM is a hybrid machining process which combines the mechanism of material removal of conventional grinding and ultrasonic machining. Downscaling of RUM for micro scale machining is essential to generate miniature features or parts from hard and brittle materials. The goal of this thesis is to conduct a feasibility study and to develop a knowledge base for micro rotary ultrasonic machining (MRUM). Positive outcome of the feasibility study led to a comprehensive investigation on the effect of process parameters. The effect of spindle speed, grit size, vibration amplitude, tool geometry, static load and coolant on the material removal rate (MRR) of MRUM was studied. In general, MRR was found to increase with increase in spindle speed, vibration amplitude and static load. MRR was also noted to depend upon the abrasive grit size and tool geometry. The behavior of the cutting forces was modeled using time series analysis. Being a vibration assisted machining process, heat generation in MRUM is low which is essential for bone machining. Capability of MRUM process for machining bone tissue was investigated. Finally, to estimate the MRR a predictive model was proposed. The experimental and the theoretical results exhibited a matching trend.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many organizations are currently facing inventory management problems such as distributing inventory on-time and maintain the correct inventory levels to satisfy the customer or end users. Organizations understand the need for maintaining the accurate inventory levels but sometimes fall short leading a wide performance gap in maintaining inventory accurately. The inventory inaccuracy can consume much of the investment on purchasing inventory and many times leads to excessive inventory. The research objective of thesis is to provide a decision making criteria to the management for closing or maintaining the warehouse based on basic purchasing and holding cost information. The specific objectives provide information regarding the impact of inventory carrying cost, obsolete inventory, inventory turns. The methodology section explains about the carrying cost ratio that would help inventory managers to adopt best practices to avoid obsolete inventory and also reduce excessive inventory levels. The research model was helpful in providing a decision making criteria based on the performance metric developed. This research model and performance metric had been validated by analysis of warehouse data and results indicated a shift from two-echelon inventory supply chain to a one-echelon or Just In Time (JIT) based inventory supply chain. The recommendations from the case study were used by a health care organization to reorganize the supply chain resulting in the reduction of excessive inventory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the promotional brochure from the March 2004 national conference, Making Learning Visible: Peer Review and the Scholarship of Teaching. This conference was hosted by the UNL Peer Review of Teaching project and the University of Nebraska-Lincoln.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rise of new multinationals in countries like Brazil provides an opportunity to revisit and carefully construct theories of how firms internationalize, a topic on which extant theory is weak. Brazilian firms are "infant multinationals", unlike developed country firms that are "mature multinationals". They are also internationalizing in a very different global context, and can do so on the basis of different competitive advantages than multinationals that came before. Therefore, this study aims at creating subsidies for theory building about early-stage internationalization. Emerging country firms have Production competences as main competitive asset to internationalize, what reflects their competitive positioning in home markets and their entry strategy in international markets. In the case of early-entrants - Western multinationals in the 1950s and Japanese in the 1980s - the Production competence played a key role for successful internationalization. Thus, the focus of the study is the role that the Production competence plays in the internationalization of late-entrants, the emerging country multinationals. The research design considers not only the position of the headquarters but also the initiatives of the subsidiaries and the dynamic interplay between both. The paper allows a better understanding of internationalization processes and the role of Production, when firms start building their own international networks. It brings relevant insights about the paths that are being followed by emerging country multinationals, the difficulties they find, the solutions they develop. These are important inputs not only for new theory building but also for managerial practice. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose an extension of the invariance principle for nonlinear switched systems under dwell-time switched solutions. This extension allows the derivative of an auxiliary function V, also called a Lyapunov-like function, along the solutions of the switched system to be positive on some sets. The results of this paper are useful to estimate attractors of nonlinear switched systems and corresponding basins of attraction. Uniform estimates of attractors and basin of attractions with respect to time-invariant uncertain parameters are also obtained. Results for a common Lyapunov-like function and multiple Lyapunov-like functions are given. Illustrative examples show the potential of the theoretical results in providing information on the asymptotic behavior of nonlinear dynamical switched systems. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrated production scheduling and lot-sizing problem in a flow shop environment consists of establishing production lot sizes and allocating machines to process them within a planning horizon in a production line with machines arranged in series. The problem considers that demands must be met without backlogging, the capacity of the machines must be respected, and machine setups are sequence-dependent and preserved between periods of the planning horizon. The objective is to determine a production schedule to minimise the setup, production and inventory costs. A mathematical model from the literature is presented, as well as procedures for obtaining feasible solutions. However, some of the procedures have difficulty in obtaining feasible solutions for large-sized problem instances. In addition, we address the problem using different versions of the Asynchronous Team (A-Team) approach. The procedures were compared with literature heuristics based on Mixed Integer Programming. The proposed A-Team procedures outperformed the literature heuristics, especially for large instances. The developed methodologies and the results obtained are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ng and Kotz (1995) introduced a distribution that provides greater flexibility to extremes. We define and study a new class of distributions called the Kummer beta generalized family to extend the normal, Weibull, gamma and Gumbel distributions, among several other well-known distributions. Some special models are discussed. The ordinary moments of any distribution in the new family can be expressed as linear functions of probability weighted moments of the baseline distribution. We examine the asymptotic distributions of the extreme values. We derive the density function of the order statistics, mean absolute deviations and entropies. We use maximum likelihood estimation to fit the distributions in the new class and illustrate its potentiality with an application to a real data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Companies are currently choosing to integrate logics and systems to achieve better solutions. These combinations also include companies striving to join the logic of material requirement planning (MRP) system with the systems of lean production. The purpose of this article was to design an MRP as part of the implementation of an enterprise resource planning (ERP) in a company that produces agricultural implements, which has used the lean production system since 1998. This proposal is based on the innovation theory, theory networks, lean production systems, ERP systems and the hybrid production systems, which use both components and MRP systems, as concepts of lean production systems. The analytical approach of innovation networks enables verification of the links and relationships among the companies and departments of the same corporation. The analysis begins with the MRP implementation project carried out in a Brazilian metallurgical company and follows through the operationalisation of the MRP project, until its production stabilisation. The main point is that the MRP system should help the company's operations with regard to its effective agility to respond in time to demand fluctuations, facilitating the creation process and controlling the branch offices in other countries that use components produced in the matrix, hence ensuring more accurate estimates of stockpiles. Consequently, it presents the enterprise knowledge development organisational modelling methodology in order to represent further models (goals, actors and resources, business rules, business process and concepts) that should be included in this MRP implementation process for the new configuration of the production system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we carry out robust modeling and influence diagnostics in Birnbaum-Saunders (BS) regression models. Specifically, we present some aspects related to BS and log-BS distributions and their generalizations from the Student-t distribution, and develop BS-t regression models, including maximum likelihood estimation based on the EM algorithm and diagnostic tools. In addition, we apply the obtained results to real data from insurance, which shows the uses of the proposed model. Copyright (c) 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new Integer Linear Programming (ILP) approach for solving Integer Programming (IP) problems with bilinear objectives and linear constraints. The approach relies on a series of ILP approximations of the bilinear P. We compare this approach with standard linearization techniques on random instances and a set of real-world product bundling problems. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chaotic encryption algorithm is proposed based on the "Life-like" cellular automata (CA), which acts as a pseudo-random generator (PRNG). The paper main focus is to use chaos theory to cryptography. Thus, CA was explored to look for this "chaos" property. This way, the manuscript is more concerning on tests like: Lyapunov exponent, Entropy and Hamming distance to measure the chaos in CA, as well as statistic analysis like DIEHARD and ENT suites. Our results achieved higher randomness quality than others ciphers in literature. These results reinforce the supposition of a strong relationship between chaos and the randomness quality. Thus, the "chaos" property of CA is a good reason to be employed in cryptography, furthermore, for its simplicity, low cost of implementation and respectable encryption power. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Texture image analysis is an important field of investigation that has attracted the attention from computer vision community in the last decades. In this paper, a novel approach for texture image analysis is proposed by using a combination of graph theory and partially self-avoiding deterministic walks. From the image, we build a regular graph where each vertex represents a pixel and it is connected to neighboring pixels (pixels whose spatial distance is less than a given radius). Transformations on the regular graph are applied to emphasize different image features. To characterize the transformed graphs, partially self-avoiding deterministic walks are performed to compose the feature vector. Experimental results on three databases indicate that the proposed method significantly improves correct classification rate compared to the state-of-the-art, e.g. from 89.37% (original tourist walk) to 94.32% on the Brodatz database, from 84.86% (Gabor filter) to 85.07% on the Vistex database and from 92.60% (original tourist walk) to 98.00% on the plant leaves database. In view of these results, it is expected that this method could provide good results in other applications such as texture synthesis and texture segmentation. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fraud is a global problem that has required more attention due to an accentuated expansion of modern technology and communication. When statistical techniques are used to detect fraud, whether a fraud detection model is accurate enough in order to provide correct classification of the case as a fraudulent or legitimate is a critical factor. In this context, the concept of bootstrap aggregating (bagging) arises. The basic idea is to generate multiple classifiers by obtaining the predicted values from the adjusted models to several replicated datasets and then combining them into a single predictive classification in order to improve the classification accuracy. In this paper, for the first time, we aim to present a pioneer study of the performance of the discrete and continuous k-dependence probabilistic networks within the context of bagging predictors classification. Via a large simulation study and various real datasets, we discovered that the probabilistic networks are a strong modeling option with high predictive capacity and with a high increment using the bagging procedure when compared to traditional techniques. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naive Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.