972 resultados para optical transfer function
Resumo:
High-resolution planktonic foraminiferal census data from Santa Barbara Basin (Ocean Drilling Program hole 893A) demonstrate major assemblage switches between 25 and 60 ka that were associated with Dansgaard-Oeschger cycles. Stadials dominated by Neogloboquadrina pachyderma (sinistral), and Globigerinoides glutinata suggest a strong subpolar California Current influence, while interstadials marked by abundant N. pachyderma (dextral) and G. bulloides indicate a relative increase in subtropical countercurrent influence. Modern analog technique and transfer function (F-20RSC) temperature reconstructions support d18O evidence of large rapid (70 years or less) sea surface temperature shifts (3° to 5°C) between stadials and interstadials. Changes in the vertical temperature gradient and water column structure (thermocline depth) are recorded by planktonic faunal oscillations suggest bimodal stability in the organization of North Pacific surface ocean circulation. Santa Barbara Basin surface water demonstrates the rapid response of the California Current System to reorganization of North Pacific atmospheric circulation during rapid climate change.
Resumo:
This paper investigates the input-output characteristics of structural health monitoring systems for composite plates based on permanently attached piezoelectric transmitter and sensor elements. Using dynamic piezoelectricity theory and a multiple integral transform method to describe the propagating and scattered flexural waves an electro-mechanical model for simulating the voltage input-output transfer function for circular piezoelectric transmitters and sensors adhesively attached to an orthotropic composite plate is developed. The method enables the characterization of all three physical processes, i.e. wave generation, wave propagation and wave reception. The influence of transducer, plate and attached electrical circuit characteristics on the voltage output behaviour of the system is examined through numerical calculations, both in frequency and the time domain. The results show that the input-output behaviour of the system is not properly predicted by the transducers' properties alone. Coupling effects between the transducers and the tested structure have to be taken into account, and adding backing materials to the piezoelectric elements can significantly improve the sensitivity of the system. It is shown that in order to achieve maximum sensitivity, particular piezoelectric transmitters and sensors need to be designed according to the structure to be monitored and the specific frequency regime of interest.
Resumo:
A non-invasive in vivo technique was developed to evaluate changes in wrist joint stability properties induced by increased co-activation of the forearm muscles in a gripping task. Mechanical vibration at 45, 50 and 55 Hz was applied to the radial head in ten healthy volunteers. Vibrations of the styloid process of the radius and the distal end of the metacarpal bone of the index finger were measured with triaxial accelerometers. Joint stability properties were quantified by the transfer function gain between accelerations on either side of the wrist-joint. Gain was calculated with the muscles at rest and at five force levels ranging from 5% to 25% of maximum grip force (%MF). During contraction the gain was significantly greater than in control trial (0%MF) for all contractions levels at 45 and 50 Hz and a trend for 15%MF and higher at 55 Hz. Group means of contraction force and gain were significantly correlated at 45 (R-2 = 0.98) and 50 Hz (R-2 = 0.72), but not at 55 Hz (R-2 = 0.10). In conclusion, vibration transmission gain may provide a method to evaluate changes in joint stability properties. (c) 2005 Published by Elsevier Ltd.
Resumo:
The aim of this work was to investigate human contrast perception at various contrast levels ranging from detection threshold to suprathreshold levels by using psychophysical techniques. The work consists of two major parts. The first part deals with contrast matching, and the second part deals with contrast discrimination. Contrast matching technique was used to determine when the perceived contrasts of different stimuli were equal. The effects of spatial frequency, stimulus area, image complexity and chromatic contrast on contrast detection thresholds and matches were studied. These factors influenced detection thresholds and perceived contrast at low contrast levels. However, at suprathreshold contrast levels perceived contrast became directly proportional to the physical contrast of the stimulus and almost independent of factors affecting detection thresholds. Contrast discrimination was studied by measuring contrast increment thresholds which indicate the smallest detectable contrast difference. The effects of stimulus area, external spatial image noise and retinal illuminance were studied. The above factors affected contrast detection thresholds and increment thresholds measured at low contrast levels. At high contrast levels, contrast increment thresholds became very similar so that the effect of these factors decreased. Human contrast perception was modelled by regarding the visual system as a simple image processing system. A visual signal is first low-pass filtered by the ocular optics. This is followed by spatial high-pass filtering by the neural visual pathways, and addition of internal neural noise. Detection is mediated by a local matched filter which is a weighted replica of the stimulus whose sampling efficiency decreases with increasing stimulus area and complexity. According to the model, the signals to be compared in a contrast matching task are first transferred through the early image processing stages mentioned above. Then they are filtered by a restoring transfer function which compensates for the low-level filtering and limited spatial integration at high contrast levels. Perceived contrasts of the stimuli are equal when the restored responses to the stimuli are equal. According to the model, the signals to be discriminated in a contrast discrimination task first go through the early image processing stages, after which signal dependent noise is added to the matched filter responses. The decision made by the human brain is based on the comparison between the responses of the matched filters to the stimuli, and the accuracy of the decision is limited by pre- and post-filter noises. The model for human contrast perception could accurately describe the results of contrast matching and discrimination in various conditions.
Resumo:
The unmitigated transmission of undesirable vibration can result in problems by way of causing human discomfort, machinery and equipment failure, and affecting the quality of a manufacturing process. When identifiable transmission paths are discernible, vibrations from the source can be isolated from the rest of the system and this prevents or minimises the problems. The approach proposed here for vibration isolation is active force cancellation at points close to the vibration source. It uses force feedback for multiple-input and multiple-output control at the mounting locations. This is particularly attractive for rigid mounting of machine on relative flexible base where machine alignment and motions are to be restricted. The force transfer function matrix is used as a disturbance rejection performance specification for the design of MIMO controllers. For machine soft-mounted via flexible isolators, a model for this matrix has been derived. Under certain conditions, a simple multiplicative uncertainty model is obtained that shows the amount of perturbation a flexible base has on the machine-isolator-rigid base transmissibility matrix. Such a model is very suitable for use with robust control design paradigm. A different model is derived for the machine on hard-mounts without the flexible isolators. With this model, the level of force transmitted from a machine to a final mounting structure using the measurements for the machine running on another mounting structure can be determined. The two mounting structures have dissimilar dynamic characteristics. Experiments have verified the usefulness of the expression. The model compares well with other methods in the literature. The disadvantage lies with the large amount of data that has to be collected. Active force cancellation is demonstrated on an experimental rig using an AC industrial motor hard-mounted onto a relative flexible structure. The force transfer function matrix, determined from measurements, is used to design H and Static Output Feedback controllers. Both types of controllers are stable and robust to modelling errors within the identified frequency range. They reduce the RMS of transmitted force by between 30?80% at all mounting locations for machine running at 1340 rpm. At the rated speed of 1440 rpm only the static gain controller is able to provide 30?55% reduction at all locations. The H controllers on the other hand could only give a small reduction at one mount location. This is due in part to the deficient of the model used in the design. Higher frequency dynamics has been ignored in the model. This can be resolved by the use of a higher order model that can result in a high order controller. A low order static gain controller, with some tuning, performs better. But it lacks the analytical framework for analysis and design.
Resumo:
This thesis presents an approach to cutting dynamics during turning based upon the mechanism of deformation of work material around the tool nose known as "ploughing". Starting from the shearing process in the cutting zone and accounting for "ploughing", new mathematical models relating turning force components to cutting conditions, tool geometry and tool vibration are developed. These models are developed separately for steady state and for oscillatory turning with new and worn tools. Experimental results are used to determine mathematical functions expressing the parameters introduced by the steady state model in the case of a new tool. The form of these functions are of general validity though their coefficients are dependent on work and tool materials. Good agreement is achieved between experimental and predicted forces. The model is extended on one hand to include different work material by introducing a hardness factor. The model provides good predictions when predicted forces are compared to present and published experimental results. On the other hand, the extension of the ploughing model to taming with a worn edge showed the ability of the model in predicting machining forces during steady state turning with the worn flank of the tool. In the development of the dynamic models, the dynamic turning force equations define the cutting process as being a system for which vibration of the tool tip in the feed direction is the input and measured forces are the output The model takes into account the shear plane oscillation and the cutting configuration variation in response to tool motion. Theoretical expressions of the turning forces are obtained for new and worn cutting edges. The dynamic analysis revealed the interaction between the cutting mechanism and the machine tool structure. The effect of the machine tool and tool post is accounted for by using experimental data of the transfer function of the tool post system. Steady state coefficients are corrected to include the changes in the cutting configuration with tool vibration and are used in the dynamic model. A series of oscillatory cutting tests at various conditions and various tool flank wear levels are carried out and experimental results are compared with model—predicted forces. Good agreement between predictions and experiments were achieved over a wide range of cutting conditions. This research bridges the gap between the analysis of vibration and turning forces in turning. It offers an explicit expression of the dynamic turning force generated during machining and highlights the relationships between tool wear, tool vibration and turning force. Spectral analysis of tool acceleration and turning force components led to define an "Inertance Power Ratio" as a flank wear monitoring factor. A formulation of an on—line flank wear monitoring methodology is presented and shows how the results of the present model can be applied to practical in—process tool wear monitoring in • turning operations.
Resumo:
In this paper a microwave photonic filter using superstructured fiber Bragg grating and dispersive fiber is investigated. A theoretical model to describe the transfer function of the filter taking into consideration the spectral width of light source is established. Experiments are carried out to verify the theoretical analysis. Both theoretical and experimental results indicate that due to chromatic dispersion the source spectral width introduces an additional power penalty to the microwave photonic response of the filter.
Resumo:
2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94.
Resumo:
We compare the performance of advanced modulation formats in cascaded phase regenerative systems and demonstrate the importance of constellation optimization to the transfer function characteristics of the regenerator. © 2013 IEEE.
Resumo:
In this paper we summarize our recently proposed work on the information theory analysis of regenerative channels. We discuss how the design and the transfer function properties of the regenerator affect the noise statistics and enable Shannon capacities higher than that of the corresponding linear channels (in the absence of regeneration).
Resumo:
Florida Bay is a highly dynamic estuary that exhibits wide natural fluctuations in salinity due to changes in the balance of precipitation, evaporation and freshwater runoff from the mainland. Rapid and large-scale modification of freshwater flow and construction of transportation conduits throughout the Florida Keys during the late nineteenth and twentieth centuries reshaped water circulation and salinity patterns across the ecosystem. In order to determine long-term patterns in salinity variation across the Florida Bay estuary, we used a diatom-based salinity transfer function to infer salinity within 3.27 ppt root mean square error of prediction from diatom assemblages from four ~130 year old sediment records. Sites were distributed along a gradient of exposure to anthropogenic shifts in the watershed and salinity. Precipitation was found to be the primary driver influencing salinity fluctuations over the entire record, but watershed modifications on the mainland and in the Florida Keys during the late-1800s and 1900s were the most likely cause of significant shifts in baseline salinity. The timing of these shifts in the salinity baseline varies across the Bay: that of the northeastern coring location coincides with the construction of the Florida Overseas Railway (AD 1906–1916), while that of the east-central coring location coincides with the drainage of Lake Okeechobee (AD 1881–1894). Subsequent decreases occurring after the 1960s (east-central region) and early 1980s (southwestern region) correspond to increases in freshwater delivered through water control structures in the 1950s–1970s and again in the 1980s. Concomitant increases in salinity in the northeastern and south-central regions of the Bay in the mid-1960s correspond to an extensive drought period and the occurrence of three major hurricanes, while the drop in the early 1970s could not be related to any natural event. This paper provides information about major factors influencing salinity conditions in Florida Bay in the past and quantitative estimates of the pre- and post-South Florida watershed modification salinity levels in different regions of the Bay. This information should be useful for environmental managers in setting restoration goals for the marine ecosystems in South Florida, especially for Florida Bay.
Resumo:
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.
Resumo:
The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5° to 6°C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.
Resumo:
The quantitative diatom analysis of 218 surface sediment samples recovered in the Atlantic and western Indian sector of the Southern Ocean is used to define a base of reference data for paleotemperature estimations from diatom assemblages using the Imbrie and Kipp transfer function method. The criteria which justify the exclusion of samples and species out of the raw data set in order to define a reference database are outlined and discussed. Sensitivity tests with eight data sets were achieved evaluating the effects of overall dominance of single species, different methods of species abundance ranking, and no-analog conditions (e.g., Eucampia Antarctica) on the estimated paleotemperatures. The defined transfer functions were applied on a sediment core from the northern Antarctic zone. Overall dominance of Fragilariopsis kerguelensis in the diatom assemblages resulted in a close affinity between paleotemperature curve and relative abundance pattern of this species downcore. Logarithmic conversion of counting data applied with other ranking methods in order to compensate the dominance of F. kerguelensis revealed the best statistical results. A reliable diatom transfer function for future paleotemperature estimations is presented.
Resumo:
Recent evidence suggests that the Subtropical Convergence (STC) zone east of New Zealand shifted little from its modern position along Chatham Rise during the last glaciation, and that offshore surface waters north of the STC zone cooled only slightly. However, at nearshore core site P69 (2195 m depth), 115 km off the east coast of North Island and ca 300 km north of the modern STC zone, planktonic foraminiferal species, transfer function data and stable oxygen and carbon isotope records suggest that surface waters were colder by up to 6°C during the late last glacial period compared to the Holocene, and included a strong upwelling signature. Presently site P69 is bathed by south-flowing subtropical waters in the East Cape Current. The nearshore western end of Chatham Rise supports a major bathymetric depression, the Mernoo Saddle, through which some exchange between northern subtropical and southern subantarctic water presently occurs. It is proposed that as a result of much intensified current flows south of the Rise during the last glaciation, a consequence of more compressed subantarctic water masses, lowered sea level, and an expanded and stronger Westerly Wind system, there was accelerated leakage northwards of both Australasian Subantarctic Water and upwelled Antarctic Intermediate Water over Mernoo Saddle in a modified and intensified Southland Current. The expanded cold water masses displaced the south-flowing warm East Cape Current off southeastern North Island, and offshore divergence was accompanied by wind-assisted upwelling of nutrient-rich waters in the vicinity of P69. A comparable kind of inshore cold water jetting possibly characterised most glacial periods since the latest Miocene, and may account for the occasional occurrence of subantarctic marine fossils in onland late Cenozoic deposits north of the STC zone, rather than invoking wholesale major oscillations of the oceanic STC itself.