971 resultados para optical nonlinearities of condensed matter
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The numerical renormalization-group method was originally developed to calculate the thermodynamical properties of impurity Hamiltonians. A recently proposed generalization capable of computing dynamical properties is discussed. As illustrative applications, essentially exact results for the impurity specttral densities of the spin-degenerate Anderson model and of a model for electronic tunneling between two centers in a metal are presented. © 1991.
Resumo:
A polymeric precursor solution was used to deposit pure and Mg doped LiNbO3 thin films on sapphire substrates by spin-coating. The effects of magnesium addition on crystallinity, morphology and optical properties of the annealed films were investigated. X-ray diffraction patterns indicate the oriented growth of the films. Phi-scan diffraction evidenced the epitaxial growth with two in-plane variants. AFM studies show that the films are very homogeneous, dense and present smooth surfaces. The refractive index and optical losses obtained by the prism coupling method were influenced by the magnesium addition.
Resumo:
Zinc oxide (ZnO) and aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass and silicon substrates by RF magnetron sputtering using a zinc-aluminum target. Both films were deposited at a growth rate of 12.5 nm/min to a thickness of around 750 nm. In the visible region, the films exhibit optical transmittances which are greater than 80%. The optical energy gap of ZnO films increased from 3.28 eV to 3.36 eV upon doping with Al. This increase is related to the increase in carrier density from 5.9 × 1018 cm-3 to 2.6 × 1019 cm-3. The RMS surface roughness of ZnO films grown on glass increased from 14 to 28 nm even with only 0.9% at Al content. XRD analysis revealed that the ZnO films are polycrystalline with preferential growth parallel to the (002) plane, which corresponds to the wurtzite structure of ZnO.
Resumo:
Variable angle of incidence spectroscopic ellipsometry was used to determine the optical constants near the band edge of boron carbide (B5C) thin films deposited on glass and n-type Si(111) via plasma-enhanced chemical-vapor deposition. The index of refraction n, the extinction coefficient k, and the absorption coefficient are reported in the photon energy spectrum between 1.24 and 4 eV. Ellipsometry analysis of B5C films on silicon indicates a graded material, while the optical constants of B5C on glass are homogeneous. Line shape analyses of absorption data for the films on glass indicate an indirect transition at approximately 0.75 eV and a direct transition at about 1.5 eV. ©1996 American Institute of Physics.
Resumo:
The occurrence of white matter (WM) abnormalities in psychotic disorders has been suggested by several studies investigating brain pathology and diffusion tensor measures, but evidence assessing regional WM morphometry is still scarce and conflicting. In the present study, 122 individuals with first-episode psychosis (FEP) (62 fulfilling criteria for schizophrenia/schizophreniform disorder, 26 psychotic bipolar I disorder, and 20 psychotic major depressive disorder) underwent magnetic resonance imaging, as well as 94 epidemiologically recruited controls. Images were processed with the Statistical Parametric Mapping (SPM2) package, and voxel-based morphometry was used to compare groups (t-test) and subgroups (ANOVA). Initially, no regional WM abnormalities were observed when both groups (overall FEP group versus controls) and subgroups (i.e., schizophrenia/schizophreniform, psychotic bipolar I disorder, psychotic depression, and controls) were compared. However, when the voxelwise analyses were repeated excluding subjects with comorbid substance abuse or dependence, the resulting statistical maps revealed a focal volumetric reduction in right frontal WM, corresponding to the right middle frontal gyral WM/third subcomponent of the superior longitudinal fasciculus, in subjects with schizophrenia/schizophreniform disorder (n = 40) relative to controls (n = 89). Our results suggest that schizophrenia/schizophreniform disorder is associated with right frontal WM volume decrease at an early course of the illness. (c) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The free-carrier absorption cross-section sigma of a magnetic colloid composed of magnetite nanoparticles dispersed in oil is obtained by using the Z-scan technique in different experimental conditions of the laser beam. We show that it is possible to obtain sigma with picosecond pulsed and millisecond chopped beams with pulse frequencies smaller than about 30 Hz. For higher pulse frequencies, the heating of the colloidal system triggers the appearance of the Soret effect. This effect artificially increases the value of sigma calculated from the experimental results. The limits of the different experimental setups are discussed. (C) 2012 Optical Society of America
Resumo:
We present an experimental study of the nonlinear optical absorption of the eutectic mixture E7 at the nematic-isotropic phase transition by the Z-scan technique, under continuous-wave excitation at 532 nm. In the nematic region, the effective nonlinear optical coefficient beta, which vanishes in the isotropic phase, is negative for the extraordinary beam and positive for an ordinary beam. The parameter , whose definition in terms of the nonlinear absorption coefficient follows the definition of the optical-order parameter in terms of the linear dichroic ratio, behaves like an order parameter with critical exponent 0.22 +/- 0.05, in good agreement with the tricritical hypothesis for the nematic-isotropic transition.
Resumo:
The sources and concentrations of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs), faecal and biogenic sterols, and trace metals at 10 sampling sites located in Laranjeiras Bay, a large Environmental Protection Area in the southern Atlantic region of Brazil, were determined to assess the sources of organic matter and the contamination status of estuarine sediments. Organic compounds were determined by GC-FID and GC-MS, and ICP-OES was used to evaluate trace metals. The total AHs concentration ranged from 0.28 to 8.19 mu g g(-1), and n-C-29 and n-C-31 alkanes were predominant, indicating significant inputs from higher terrestrial plants. Unresolved complex mixtures (UCM) were not detected at any site, suggesting that the study area was not significantly contaminated by fossil fuels. The total PAH concentration varied from 3.85 to 89.2 ng g(-1). The ratio between selected PAH isomers showed that combustion of biomass, coal, and petroleum is the rnain source of PAHs in the study area. The concentrations of the faecal sterols coprostanol and epicoprostanol were below the detection limits, suggesting that sewage was not a significant contributor to sedimentary organic matter. The concentrations of the trace metals (As, Cr, Cu, Ni, Pb and Zn) were low, except near sites located at the mouths of rivers that discharge into the study area and near urbanised regions (Paranagua city and the adjoining harbour). In general, the concentrations of PAHs were below the threshold effect concentrations (TEL) levels. Although the As, Cr and Ni concentrations were above the TEL levels, the study area can be considered as preserved from human activities.
Resumo:
This Letter reports an investigation on the optical properties of copper nanocubes as a function of size as modeled by the discrete dipole approximation. In the far-field, our results showed that the extinction resonances shifted from 595 to 670 nm as the size increased from 20 to 100 nm. Also, the highest optical efficiencies for absorption and scattering were obtained for nanocubes that were 60 and 100 nm in size, respectively. In the near-field, the electric-field amplitudes were investigated considering 514, 633 and 785 nm as the excitation wavelengths. The E-fields increased with size, being the highest at 633 nm. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
We consider a toy del to analyze the consequences of dark matter interaction with a dark energy background on the overall rotation of galaxy clusters and the misalignment between their dark matter and baryon distributions when compared to ACDM predictions. The interaction parameters are found via a genetic algorithm search. The results obtained suggest that interaction is a basic phenomenon whose effects are detectable even in simple models of galactic dynamics.
Testing phenomenological and theoretical models of dark matter density profiles with galaxy clusters
Resumo:
We use the stacked gravitational lensingmass profile of four high-mass (M 1015M ) galaxy clusters around z≈0.3 from Umetsu et al. to fit density profiles of phenomenological [Navarro– Frenk–White (NFW), Einasto, S´ersic, Stadel, Baltz–Marshall–Oguri (BMO) and Hernquist] and theoretical (non-singular Isothermal Sphere, DARKexp and Kang & He) models of the dark matter distribution. We account for large-scale structure effects, including a two-halo term in the analysis.We find that the BMO model provides the best fit to the data as measured by the reduced χ2. It is followed by the Stadel profile, the generalized NFW profile with a free inner slope and by the Einasto profile. The NFW model provides the best fit if we neglect the two-halo term, in agreement with results from Umetsu et al. Among the theoretical profiles, the DARKexp model with a single form parameter has the best performance, very close to that of the BMO profile. This may indicate a connection between this theoretical model and the phenomenology of dark matter haloes, shedding light on the dynamical basis of empirical profiles which emerge from numerical simulations.
Resumo:
The nonlinear index of refraction (n(2)) and the two-photon absorption coefficient (beta) of water-based ferrofluids made of magnetite nanocrystals of different sizes and with different coatings have been measured through the Z-scan technique, with ultrashort (femtoseconds) laser pulses. Their third-order susceptibility is calculated from the values of n(2) and beta. The influence of different particles' coatings and sizes on these nonlinear optical properties are investigated. The values of n(2) and beta depend more significantly on the nanoparticles' size than on the particular coating. We observe a decrease of beta as the nanoparticles' diameters decrease, although the optical gap is found to be the same for all samples. The results are interpreted considering modifications in the electronic orbital shape due to the particles' nanosize effect.
Resumo:
Over the last few years, low-level light therapy (LLLT) has shown an incredible suitability for a wide range of applications for central nervous system (CNS) related diseases. In this therapeutic modality light dosimetry is extremely critical so the study of light propagation through the CNS organs is of great importance. To better understand how light intensity is delivered to the most relevant neural sites we evaluated optical transmission through slices of rat brain point by point. We experimented red (λ = 660 nm) and near infrared (λ = 808 nm) diode laser light analyzing the light penetration and distribution in the whole brain. A fresh Wistar rat (Rattus novergicus) brain was cut in sagittal slices and illuminated with a broad light beam. A high-resolution digital camera was employed to acquire data of transmitted light. Spatial profiles of the light transmitted through the sample were obtained from the images. Peaks and valleys in the profiles show sites where light was less or more attenuated. The peak intensities provide information about total attenuation and the peak widths are correlated to the scattering coefficient at that individual portion of the sample. The outcomes of this study provide remarkable information for LLLT dose-dependent studies involving CNS and highlight the importance of LLLT dosimetry in CNS organs for large range of applications in animal and human diseases.
Resumo:
This work reports on the two-photon absorption (2PA) cross-section and first hyperpolarizability of dibenzoylmethane solutions using femtosecond Z-scan and hyper-Rayleigh scattering techniques. The 2PA spectrum, spanning the wavelength range from 460 to 740 nm, presents a band centered at 510 nm, with a cross-section value estimated as 37 GM at this wavelength. Owing to the molecular symmetry, this band is not observed in the linear absorption spectrum. The sum-over-state approach was adopted to evaluate various spectroscopic parameters. Experimental and theoretical values of the first hyperpolarizability values were estimated in ethanol and DMSO solutions.