684 resultados para online interaction learning model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

La plasticité synaptique est une propriété indispensable à l’acquisition de la mémoire chez toutes les espèces étudiées, des invertébrés aux primates. La formation d’une mémoire débute par une phase de plasticité qui inclut une restructuration synaptique ; ensuite elle se poursuit par la consolidation de ces modifications, contribuant à la mémoire à long terme. Certaines mémoires redeviennent malléables lorsqu’elles sont rappelées. La trace mnésique entre alors dans une nouvelle de phase de plasticité, au cours de laquelle certaines composantes de la mémoire peuvent être mises à jour, puis reconsolidées. L’objectif de la présente thèse est d’étudier les mécanismes cellulaires et moléculaires qui sont activés lors du rappel d’une mémoire. Nous avons utilisé un modèle de conditionnement Pavlovien, combiné à l’administration d’agents pharmacologiques et à l’analyse quantitative de marqueurs de plasticité synaptique, afin d’étudier la dynamique de la mémoire de peur auditive chez des rats Sprague Dawley. La circuiterie neuronale et les mécanismes associatifs impliqués dans la neurobiologie de cette mémoire sont bien caractérisés, en particulier le rôle des récepteurs glutamatergiques de type NMDA et AMPA dans la plasticité synaptique et la consolidation. Nos résultats démontrent que le retour de la trace mnésique à un état de labilité nécessite l’activation des récepteurs NMDA dans l’amygdale baso-latérale à l’instant même du rappel, alors que les récepteurs AMPA sont requis pour l’expression comportementale de la réponse de peur conditionnée. D’autre part, les résultats identifient le rappel comme une phase bien plus dynamique que présumée, et suggèrent que l’expression de la peur conditionnée mette en jeu la régulation du trafic des récepteurs AMPA par les récepteurs NMDA. Le présent travail espère contribuer à la compréhension de la neurobiologie fondamentale de la mémoire. De plus, il propose une intégration des résultats aux modèles animaux d’étude des troubles psychologiques conséquents aux mémoires traumatiques chez l’humain, tels que les phobies et les syndromes de stress post-traumatiques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dans ce travail, nous explorons la faisabilité de doter les machines de la capacité de prédire, dans un contexte d'interaction homme-machine (IHM), l'émotion d'un utilisateur, ainsi que son intensité, de manière instantanée pour une grande variété de situations. Plus spécifiquement, une application a été développée, appelée machine émotionnelle, capable de «comprendre» la signification d'une situation en se basant sur le modèle théorique d'évaluation de l'émotion Ortony, Clore et Collins (OCC). Cette machine est apte, également, à prédire les réactions émotionnelles des utilisateurs, en combinant des versions améliorées des k plus proches voisins et des réseaux de neurones. Une procédure empirique a été réalisée pour l'acquisition des données. Ces dernières ont fourni une connaissance consistante aux algorithmes d'apprentissage choisis et ont permis de tester la performance de la machine. Les résultats obtenus montrent que la machine émotionnelle proposée est capable de produire de bonnes prédictions. Une telle réalisation pourrait encourager son utilisation future dans des domaines exploitant la reconnaissance automatique de l'émotion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron-phonon interaction is considered within the framework of the fluctuating valence of Cu atoms. Anderson's lattice Hamiltonian is suitably modified to take this into account. Using Green's function technique tbe possible quasiparticle excitations' are determined. The quantity 2delta k(O)/ kB Tc is calculated for Tc= 40 K. The calculated values are in good agreement with the experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in structural glasses. Our results are confirmed by numerical simulations and the link between the type of spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to develop an internet-based seminar framework applicable for landscape architecture education. This process was accompanied by various aims. The basic expectation was to keep the main characteristics of landscape architecture education also in the online format. On top of that, four further objectives were anticipated: (1) training of competences for virtual team work, (2) fostering intercultural competence, (3) creation of equal opportunities for education through internet-based open access and (4) synergy effects and learning processes across institutional boundaries. This work started with the hypothesis that these four expected advantages would compensate for additional organisational efforts caused by the online delivery of the seminars and thus lead to a sustainable integration of this new learning mode into landscape architecture curricula. This rationale was followed by a presentation of four areas of knowledge to which the seminar development was directly related (1) landscape architecture as a subject and its pedagogy, (2) general learning theories, (3) developments in the ICT sector and (4) wider societal driving forces such as global citizenship and the increase of open educational resources. The research design took the shape of a pedagogical action research cycle. This approach was constructive: The author herself is teaching international landscape architecture students so that the model could directly be applied in practice. Seven online seminars were implemented in the period from 2008 to 2013 and this experience represents the core of this study. The seminars were conducted with varying themes while its pedagogy, organisation and the technological tools remained widely identical. The research design is further based on three levels of observation: (1) the seminar design on the basis of theory and methods from the learning sciences, in particular educational constructivism, (2) the seminar evaluation and (3) the evaluation of the seminars’ long term impact. The seminar model itself basically consists of four elements: (1) the taxonomy of learning objectives, (2) ICT tools and their application and pedagogy, (3) process models and (4) the case study framework. The seminar framework was followed by the presentation of the evaluation findings. The major findings of this study can be summed up as follows: Implementing online seminars across educational and national boundaries was possible both in term of organisation and technology. In particular, a high level of cultural diversity among the seminar participants has definitively been achieved. However, there were also obvious obstacles. These were primarily competing study commitments and incompatible schedules among the students attending from different academic programmes, partly even in different time zones. Both factors had negative impact on the individual and working group performances. With respect to the technical framework it can be concluded that the majority of the participants were able to use the tools either directly without any problem or after overcoming some smaller problems. Also the seminar wiki was intensively used for completing the seminar assignments. However, too less truly collaborative text production was observed which could be improved by changing the requirements for the collaborative task. Two different process models have been applied for guiding the collaboration of the small groups and both were in general successful. However, it needs to be said that even if the students were able to follow the collaborative task and to co-construct and compare case studies, most of them were not able to synthesize the knowledge they had compiled. This means that the area of consideration often remained on the level of the case and further reflections, generalisations and critique were largely missing. This shows that the seminar model needs to find better ways for triggering knowledge building and critical reflection. It was also suggested to have a more differentiated group building strategy in future seminars. A comparison of pre- and post seminar concept maps showed that an increase of factual and conceptual knowledge on the individual level was widely recognizable. Also the evaluation of the case studies (the major seminar output) revealed that the students have undergone developments of both the factual and the conceptual knowledge domain. Also their self-assessment with respect to individual learning development showed that the highest consensus was achieved in the field of subject-specific knowledge. The participants were much more doubtful with regard to the progress of generic competences such as analysis, communication and organisation. However, 50% of the participants confirmed that they perceived individual development on all competence areas the survey had asked for. Have the additional four targets been met? Concerning the competences for working in a virtual team it can be concluded that the vast majority was able to use the internet-based tools and to work with them in a target-oriented way. However, there were obvious differences regarding the intensity and activity of participation, both because of external and personal factors. A very positive aspect is the achievement of a high cultural diversity supporting the participants’ intercultural competence. Learning from group members was obviously a success factor for the working groups. Regarding the possibilities for better accessibility of educational opportunities it became clear that a significant number of participants were not able to go abroad during their studies because of financial or personal reasons. They confirmed that the online seminar was to some extent a compensation for not having been abroad for studying. Inter-institutional learning and synergy was achieved in so far that many teachers from different countries contributed with individual lectures. However, those teachers hardly ever followed more than one session. Therefore, the learning effect remained largely within the seminar learning group. Looking back at the research design it can be said that the pedagogical action research cycle was an appropriate and valuable approach allowing for strong interaction between theory and practice. However, some more external evaluation from peers in particular regarding the participants’ products would have been valuable.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A distributed method for mobile robot navigation, spatial learning, and path planning is presented. It is implemented on a sonar-based physical robot, Toto, consisting of three competence layers: 1) Low-level navigation: a collection of reflex-like rules resulting in emergent boundary-tracing. 2) Landmark detection: dynamically extracts landmarks from the robot's motion. 3) Map learning: constructs a distributed map of landmarks. The parallel implementation allows for localization in constant time. Spreading of activation computes both topological and physical shortest paths in linear time. The main issues addressed are: distributed, procedural, and qualitative representation and computation, emergent behaviors, dynamic landmarks, minimized communication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider an online learning scenario in which the learner can make predictions on the basis of a fixed set of experts. The performance of each expert may change over time in a manner unknown to the learner. We formulate a class of universal learning algorithms for this problem by expressing them as simple Bayesian algorithms operating on models analogous to Hidden Markov Models (HMMs). We derive a new performance bound for such algorithms which is considerably simpler than existing bounds. The bound provides the basis for learning the rate at which the identity of the optimal expert switches over time. We find an analytic expression for the a priori resolution at which we need to learn the rate parameter. We extend our scalar switching-rate result to models of the switching-rate that are governed by a matrix of parameters, i.e. arbitrary homogeneous HMMs. We apply and examine our algorithm in the context of the problem of energy management in wireless networks. We analyze the new results in the framework of Information Theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As AI has begun to reach out beyond its symbolic, objectivist roots into the embodied, experientialist realm, many projects are exploring different aspects of creating machines which interact with and respond to the world as humans do. Techniques for visual processing, object recognition, emotional response, gesture production and recognition, etc., are necessary components of a complete humanoid robot. However, most projects invariably concentrate on developing a few of these individual components, neglecting the issue of how all of these pieces would eventually fit together. The focus of the work in this dissertation is on creating a framework into which such specific competencies can be embedded, in a way that they can interact with each other and build layers of new functionality. To be of any practical value, such a framework must satisfy the real-world constraints of functioning in real-time with noisy sensors and actuators. The humanoid robot Cog provides an unapologetically adequate platform from which to take on such a challenge. This work makes three contributions to embodied AI. First, it offers a general-purpose architecture for developing behavior-based systems distributed over networks of PC's. Second, it provides a motor-control system that simulates several biological features which impact the development of motor behavior. Third, it develops a framework for a system which enables a robot to learn new behaviors via interacting with itself and the outside world. A few basic functional modules are built into this framework, enough to demonstrate the robot learning some very simple behaviors taught by a human trainer. A primary motivation for this project is the notion that it is practically impossible to build an "intelligent" machine unless it is designed partly to build itself. This work is a proof-of-concept of such an approach to integrating multiple perceptual and motor systems into a complete learning agent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe the key role played by partial evaluation in the Supercomputing Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputing Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at MIT, and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A través de un caso de estudio se explora cómo la construcción de sentido de un grupo de directivos, bajo una misma inspiración, generó el inicio de un cambio estratégico en una prestigiosa y reconocida universidad colombiana, la Universidad del Rosario. Una institución que en un momento determinado notó que estaba siendo percibida dentro del sector de la educación superior como pequeña, estática en el avance de algunas disciplinas del conocimiento y conservadora; en otras palabras, que estaba perdiendo el reconocimiento que usualmente la había acompañado. A través del estudio de este caso se utilizó la técnica de análisis de discurso para comprender la construcción de sentido del inicio de un cambio estratégico en las organizaciones. Esta técnica permitió analizar la información cualitativa derivada de las entrevistas que se realizaron en profundidad a la cúpula de directivos de la institución y a algunos destacados representantes del sector de la Educación Superior en Colombia. Los resultados sugieren que se hicieron presentes, efectivamente, algunas condiciones específicas que marcaron el inicio de un cambio estratégico en la institución y un viraje en su identidad e imagen. Hechos que se sustentaron en los miembros de un equipo que procuró interpretar y comprender los cambios existentes en el entorno global y local, y asimilar, igualmente, algunos destacados retos que se planteaban por aquella época, al interior de la propia Universidad