952 resultados para no conforming mesh
Resumo:
The use of unstructured mesh codes on parallel machines is one of the most effective ways to solve large computational mechanics problems. Completely general geometries and complex behaviour can be modelled and, in principle, the inherent sparsity of many such problems can be exploited to obtain excellent parallel efficiencies. However, unlike their structured counterparts, the problem of distributing the mesh across the memory of the machine, whilst minimising the amount of interprocessor communication, must be carefully addressed. This process is an overhead that is not incurred by a serial code, but is shown to rapidly computable at turn time and tailored for the machine being used.
Resumo:
The availability of CFD software that can easily be used and produce high efficiency on a wide range of parallel computers is extremely limited. The investment and expertise required to parallelise a code can be enormous. In addition, the cost of supercomputers forces high utilisation to justify their purchase, requiring a wide range of software. To break this impasse, tools are urgently required to assist in the parallelisation process that dramatically reduce the parallelisation time but do not degrade the performance of the resulting parallel software. In this paper we discuss enhancements to the Computer Aided Parallelisation Tools (CAPTools) to assist in the parallelisation of complex unstructured mesh-based computational mechanics codes.
Resumo:
Abstract not available
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for mapping meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight in the graph with the aim of minimising the parallel communication overhead. However it has been shown that for certain classes of problem, the convergence of the underlying solution algorithm is strongly influenced by the shape or aspect ratio of the subdomains. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.
Resumo:
Unstructured mesh codes for modelling continuum physics phenomena have evolved to provide the facility to model complex interacting systems. Parallelisation of such codes using single Program Multi Data (SPMD) domain decomposition techniques implemented with message passing has been demonstrated to provide high parallel efficiency, scalability to large numbers of processors P and portability across a wide range of parallel platforms. High efficiency, especially for large P requires that load balance is achieved in each parallel loop. For a code in which loops span a variety of mesh entity types, for example, elements, faces and vertices, some compromise is required between load balance for each entity type and the quantity of inter-processor communication required to satisfy data dependence between processors.
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight, however it has been shown that for certain classes of solution algorithm, the convergence of the solver is strongly influenced by the subdomain aspect ratio. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.
Resumo:
As the efficiency of parallel software increases it is becoming common to measure near linear speedup for many applications. For a problem size N on P processors then with software running at O(N=P ) the performance restrictions due to file i/o systems and mesh decomposition running at O(N) become increasingly apparent especially for large P . For distributed memory parallel systems an additional limit to scalability results from the finite memory size available for i/o scatter/gather operations. Simple strategies developed to address the scalability of scatter/gather operations for unstructured mesh based applications have been extended to provide scalable mesh decomposition through the development of a parallel graph partitioning code, JOSTLE [8]. The focus of this work is directed towards the development of generic strategies that can be incorporated into the Computer Aided Parallelisation Tools (CAPTools) project.
Resumo:
This paper deals with the measure of Aspect Ratio for mesh partitioning and gives hints why, for certain solvers, the Aspect Ratio of partitions plays an important role. We define and rate different kinds of Aspect Ratio, present a new center-based partitioning method which optimizes this measure implicitly and rate several existing partitioning methods and tools under the criterion of Aspect Ratio.
Resumo:
A method is outlined for optimising graph partitions which arise in mapping unstructured mesh calculations to parallel computers. The method employs a relative gain iterative technique to both evenly balance the workload and minimise the number and volume of interprocessor communications. A parallel graph reduction technique is also briefly described and can be used to give a global perspective to the optimisation. The algorithms work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds. The algorithms can also be used for dynamic load-balancing, reusing existing partitions and in this case the procedures are much faster than static techniques, provide partitions of similar or higher quality and, in comparison, involve the migration of a fraction of the data.
Resumo:
Abstract not available
Resumo:
Introduction. Endoscopic hernia repair methods have become increasingly popular over the past 15 years. Nonetheless, there is no consensus regarding an optimal fixation method. Transabdominal sutures and titanium tacks or staples are the most traditional ones. Case report. We present a case of mechanic small bowel obstruction due to mesh migration occurring one year and a half after incisional hernia repair with polytetrafluoroethylene mesh fixed by spiral tacks. Discussion. Titanium spiral tacks are dangerous because of their sharp components, which can damage organs such as the small intestine, by causing microperforations. The type of prosthesis used has also contributed to the intraluminal migration, since polytetrafluoroethylene mesh is very flexible and poorly integrates in the abdominal wall. Conclusion. A prosthesis of a different material combined with a different fixation system such as absorbable tacks, biological glue, or mechanical tacks without sharp components, would have obviated mesh migration. .
Resumo:
Gillnets are popularly used in commercial fishing on both Lake kioga and lake Victoria. On Lake kioga the legal mesh size is from 4½ (114) upwards while on Lake Victoria, a multifishery lake, various mesh sizes are in operation. However, the fishermen on these lakes still use the smaller meshes to be able to harvest certain categories of fish especially Oreochromis species group whose catch rates are already on the decline due to either use of small mesh size nets, high fishing pressure and to L.Kioga in particular, predation by lates niloticus.
Resumo:
The digital revolution of the 21st century contributed to stem the Internet of Things (IoT). Trillions of embedded devices using the Internet Protocol (IP), also called smart objects, will be an integral part of the Internet. In order to support such an extremely large address space, a new Internet Protocol, called Internet Protocol Version 6 (IPv6) is being adopted. The IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) has accelerated the integration of WSNs into the Internet. At the same time, the Constrained Application Protocol (CoAP) has made it possible to provide resource constrained devices with RESTful Web services functionalities. This work builds upon previous experience in street lighting networks, for which a proprietary protocol, devised by the Lighting Living Lab, was implemented and used for several years. The proprietary protocol runs on a broad range of lighting control boards. In order to support heterogeneous applications with more demanding communication requirements and to improve the application development process, it was decided to port the Contiki OS to the four channel LED driver (4LD) board from Globaltronic. This thesis describes the work done to adapt the Contiki OS to support the Microchip TM PIC24FJ128GA308 microprocessor and presents an IP based solution to integrate sensors and actuators in smart lighting applications. Besides detailing the system’s architecture and implementation, this thesis presents multiple results showing that the performance of CoAP based resource retrievals in constrained nodes is adequate for supporting networking services in street lighting networks.
Resumo:
We propose a pre-processing mesh re-distribution algorithm based upon harmonic maps employed in conjunction with discontinuous Galerkin approximations of advection-diffusion-reaction problems. Extensive two-dimensional numerical experiments with different choices of monitor functions, including monitor functions derived from goal-oriented a posteriori error indicators are presented. The examples presented clearly demonstrate the capabilities and the benefits of combining our pre-processing mesh movement algorithm with both uniform, as well as, adaptive isotropic and anisotropic mesh refinement.