908 resultados para nervous system development


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BRUNOL/CELF family of RNA-binding proteins plays important roles in post-transcriptional regulation and has been implicated in several developmental processes. In this study, we describe the cloning and expression patterns of five Brunol genes in Xenopus laevis. Among them, only Brunol2 is maternally expressed and the zygotic expression of the other four Brunol genes starts at different developmental stages. During Xenopus development, Brunol1, 4-5 are exclusively expressed in the nervous system including domains in the brain, spinal cord, optic and otic vesicles. Brunol2 and 3 are expressed in both the somatic mesoderm and the nervous system. Brunol2 is also extensively expressed in the lens. In transfected Hela cells, BRUNOL1, 2 and 3 proteins are localized in both the cytoplasm and the nucleus, while BRUNOL4 and 5 are only present in the cytoplasm, indicating their different functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cDNA for a novel T-box containing gene was isolated from the amphioxus Branchiostoma belcheri. A molecular phylogenetic tree constructed from the deduced amino acid sequence of the isolated cDNA indicates that this gene belongs to the T-Brain subfamily. In situ hybridization reveals that the expression is first detected in the invaginating archenteron at the early gastrula stage and this expression is down-regulated at the neurula stage. In early larvae, the expression appears again and transcripts are detected exclusively in the pre-oral pit (wheel organ-Hatschek's pit of the adult). In contrast to the vertebrate counterparts, no transcripts are detected in the brain vesicle or nerve cord throughout the development. These results are interpreted to mean that a role of T-Brain products in vertebrate forebrain development was acquired after the amphioxus was split from the lineage leading to the vertebrates. On the other hand, comparison of the tissue-specific expression domain of T-Brain genes and other genes between amphioxus and vertebrates revealed that the pre-oral pit of amphioxus has several molecular features which are comparable to those of the vertebrate olfactory and hypophyseal placode. (C) 2002 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of phenoloxidase during amphioxus embryogenesis was spectrophotometrically and histochemically studied for the first time in the present study. It was found that (1) PO activity initially appeared in the general ectoderm including the neural ectoderm and the epidermal ectoderm at the early neurala stage but not in the mesoderm or the endoderm, and (2) PO activity disappeared in the neural plate cells but remained unchanged in the epidermal cells when the neural plate was morphologically quite distinct from the rest of the ectoderm. It is apparent that PO could serve as a marker enzyme for differentiation of the neural ectoderm from the epidermal ectoderm during embryonic development of amphioxus. (C) 2000 Elsevier Science ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoderm formation plays a crucial role in the establishment of the chordate body plan. In this regard, lancelet embryos develop structures such as the anteriorly extended notochord and the lateral divertecula in their anterior body. To elucidate the developmental basis of these structures, we examined the expression pattern of a lancelet twist-related gene, Bbtwist, from the late gastrula to larval stages. In late-gastrula embryos, the transcripts of Bbtwist were detected in the presumptive first pair of somites and the middorsal wall of the primitive gut. The expression of Bbtwist was then upregulated in the lateral wall of somites and the notochord. At the late-neurula stage, it was also expressed in the anterior wall of the primitive gut, as well as in the evaginating lateral diverticula. No signal was detected in the left lateral diverticulum when it was separated from the gut, while in the right one, the gene was expressed later during the formation of the head coelom in knife-shaped larvae, and in the anterior part of the notochord in the same larvae. In 36-h larvae, only faint expression was detected in the differentiating notochordal and paraxial mesoderm in the caudal region. These expression patterns suggest that Bbtwist is involved in early differentiation of mesodermal subsets as seen in Drosophila and vertebrates. The expression in the anterior notochord may be related to its anterior expansion. The expression in the anterior wall of the primitive gut and its derivative, the lateral diverticula, suggests that lancelets share the capability to produce a mesodermal population from the tip of the primitive gut with nonchordate deuterostome embryos. (C) 1998 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA editing is a biological phenomena that alters nascent RNA transcripts by insertion, deletion and/or substitution of one or a few nucleotides. It is ubiquitous in all kingdoms of life and in viruses. The predominant editing event in organisms with a developed central nervous system is Adenosine to Inosine deamination. Inosine is recognized as Guanosine by the translational machinery and reverse-transcriptase. In primates, RNA editing occurs frequently in transcripts from repetitive regions of the genome. In humans, more than 500,000 editing instances have been identified, by applying computational pipelines on available ESTs and high-throughput sequencing data, and by using chemical methods. However, the functions of only a small number of cases have been studied thoroughly. RNA editing instances have been found to have roles in peptide variants synthesis by non-synonymous codon substitutions, transcript variants by alterations in splicing sites and gene silencing by miRNAs sequence modifications. We established the Database of RNA EDiting (DARNED) to accommo-date the reference genomic coordinates of substitution editing in human, mouse and fly transcripts from published literatures, with additional information on edited genomic coordinates collected from various databases e.g. UCSC, NCBI. DARNED contains mostly Adenosine to Inosine editing and allows searches based on genomic region, gene ID, and user provided sequence. The Database is accessible at http://darned.ucc.ie RNA editing instances in coding region are likely to result in recoding in protein synthesis. This encouraged me to focus my research on the occurrences of RNA editing specific CDS and non-Alu exonic regions. By applying various filters on discrepancies between available ESTs and their corresponding reference genomic sequences, putative RNA editing candidates were identified. High-throughput sequencing was used to validate these candidates. All predicted coordinates appeared to be either SNPs or unedited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely appreciated that larvae of the nematode Caenorhabditis elegans arrest development by forming dauer larvae in response to multiple unfavorable environmental conditions. C. elegans larvae can also reversibly arrest development earlier, during the first larval stage (L1), in response to starvation. "L1 arrest" (also known as "L1 diapause") occurs without morphological modification but is accompanied by increased stress resistance. Caloric restriction and periodic fasting can extend adult lifespan, and developmental models are critical to understanding how the animal is buffered from fluctuations in nutrient availability, impacting lifespan. L1 arrest provides an opportunity to study nutritional control of development. Given its relevance to aging, diabetes, obesity and cancer, interest in L1 arrest is increasing, and signaling pathways and gene regulatory mechanisms controlling arrest and recovery have been characterized. Insulin-like signaling is a critical regulator, and it is modified by and acts through microRNAs. DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved. The nervous system, epidermis, and intestine contribute systemically to regulation of arrest, but cell-autonomous signaling likely contributes to regulation in the germline. A relatively small number of genes affecting starvation survival during L1 arrest are known, and many of them also affect adult lifespan, reflecting a common genetic basis ripe for exploration. mRNA expression is well characterized during arrest, recovery, and normal L1 development, providing a metazoan model for nutritional control of gene expression. In particular, post-recruitment regulation of RNA polymerase II is under nutritional control, potentially contributing to a rapid and coordinated response to feeding. The phenomenology of L1 arrest will be reviewed, as well as regulation of developmental arrest and starvation survival by various signaling pathways and gene regulatory mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Confocal microscopy interfaced with cytochemical procedures has been used to monitor development of the major muscle systems and associated serotoninergic (5-HT, 5-hydroxytryptamine) and peptidergic (FaRP, FMRFamide-related peptide) innervation of the strigeid trematodes, Apatemon cobitidis proterorhini and Cotylurus erraticus during cultivation in vitro. Sexually undifferentiated metacercariae were successfully grown to ovigerous adults using tissue culture medium NCTC 135, chicken serum and egg albumen. Eggs were produced after 5 days in culture but had abnormal shells and failed to embryonate. 5-HT and FaRP (the flatworm FaRP, GYIRFamide) were localised immunocytochemically in both central and peripheral nervous systems of developing worms. During cultivation, the central serotoninergic and FaRPergic neuronal pathways of the forebody became more extensive, but retained the same basic orthogonal arrangement as found in the excysted metacercaria. Longitudinal extensor and flexor muscles of the hindbody provide support for the developing reproductive complex. The male reproductive tracts were established in advance (day 3) of those of the female system (day 4); completion of the latter was marked by the appearance of the ootype/egg chamber. The inner longitudinal muscle fibres of the female tract appeared prior to the outer and more densely arranged circular muscles. Circular fibres dominate the muscle complement of both alimentary and reproductive tracts. 5-HT- and GYIRFamide-immunoreactivities were demonstrable in the central nervous system (CNS) and subtegumental parasympathetic nervous system (PNS) throughout the culture period, but innervation of the developing reproductive structures was reactive just for 5-HT. Only at the onset of egg production was FaRP-IR observed in the reproductive system and was expressed only in the innervation of the ootype, a finding consistent with the view that FaRPs may regulate egg assembly in platyhelminths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heterotrimeric kinesin-II motor in Caenorhabditis elegans consists of KLP-20, KLP-11, and KAP-1 subunits and broadly functions in cellular transport for the development of biological structures including cilia and axons. The results of this paper support the ubiquitous and necessary role kinesin-II motors have in development, particularly the KLP-20 microtubule-associating subunit. Mutations in klp-20 result in a variable abnormal (vab) phenotype characterized by observable epidermal defects, although the role of this gene in development and the mechanism by which the vab phenotype is produced is largely unknown. The vab phenotype is highly penetrant in the first larval stage (L1) of C. elegans, which supports that klp-20 functions in early development. Ciliated amphid sensory neurons can be stained with a fluorescent dye, DiI, to simultaneously test cilia structure and function, as well as the morphology of the amphid sensory organ. Reduced dye uptake in klp-20 mutant L1s suggests that the microtubule-based cilia are under-developed as a result of defective kinesin-II function. Consistent observations of the PLM mechanosensory neuron using the zdIs5 reporter suggest that klp-20 has an essential role in neuron development, as mutations to klp-20 result in under-developed PLM axons. Qualitative observations suggest there may be an interaction between the development of the overlying epidermis and the underlying nervous system, as a more severe vab phenotype is observed simultaneously with reduced dye uptake, and hence amphid sensory cilia under-development. Furthermore, a more severe vab phenotype manifested as large bumps on the posterior epidermis appears to be spatially correlated with PLM defects. The results presented and discussed in this paper suggest that KLP-20 has a necessary role in neurodevelopment and epidermal morphogenesis in C. elegans during embryogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian nervous system exerts essential control on many physiological processes in the organism and is itself controlled extensively by a variety of genetic regulatory mechanisms. microRNA (miR), an abundant class of small non-coding RNA, are emerging as important post-transcriptional regulators of gene expression in the brain. Increasing evidence indicates that miR regulate both the development and function of the nervous system. Moreover, deficiency in miR function has also been implicated in a number of neurological disorders. Expression profile analysis of miR is necessary to understand their complex role in the regulation of gene expression during the development and differentiation of cells. Here we present a comparative study of miR expression profiles in neuroblastoma, in cortical development, and in neuronal differentiation of embryonic stem (ES) cells. By microarray profiling in combination with real time PCR we show that miR-7 and miR-214 are modulated in neuronal differentiation (as compared to miR-1, -16 and -133a), and control neurite outgrowth in vitro. These findings provide an important step toward further elucidation of miR function and miR-related gene regulatory networks in the mammalian central nervous system. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is an animal model of autoimmune inflammatory demyelination that is mediated by Th1 and Th17 cells. The transcription factor interferon regulatory factor 3 (IRF3) is activated by pathogen recognition receptors and induces interferon-beta production.

METHODS: To determine the role of IRF3 in autoimmune inflammation, we immunised wild-type (WT) and irf3-/- mice to induce EAE. Splenocytes from WT and irf3-/- mice were also activated in vitro in Th17-polarising conditions.

RESULTS: Clinical signs of disease were significantly lower in mice lacking IRF3, with reduced Th1 and Th17 cells in the central nervous system. Peripheral T-cell responses were also diminished, including impaired proliferation and Th17 development in irf3-/- mice. Myelin-reactive CD4+ cells lacking IRF3 completely failed to transfer EAE in Th17-polarised models as did WT cells transferred into irf3-/- recipients. Furthermore, IRF3 deficiency in non-CD4+ cells conferred impairment of Th17 development in antigen-activated cultures.

CONCLUSION: These data show that IRF3 plays a crucial role in development of Th17 responses and EAE and warrants investigation in human multiple sclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Whilst multimorbidity is more prevalent with increasing age, approximately 30% of middle-aged adults (45-64 years) are also affected. Several prescribing criteria have been developed to optimise medication use in older people (≥65 years) with little focus on potentially inappropriate prescribing (PIP) in middle-aged adults. We have developed a set of explicit prescribing criteria called PROMPT (PRescribing Optimally in Middle-aged People's Treatments) which may be applied to prescribing datasets to determine the prevalence of PIP in this age-group.

METHODS: A literature search was conducted to identify published prescribing criteria for all age groups, with the Project Steering Group (convened for this study) adding further criteria for consideration, all of which were reviewed for relevance to middle-aged adults. These criteria underwent a two-round Delphi process, using an expert panel consisting of general practitioners, pharmacists and clinical pharmacologists from the United Kingdom and Republic of Ireland. Using web-based questionnaires, 17 panellists were asked to indicate their level of agreement with each criterion via a 5-point Likert scale (1 = Strongly Disagree, 5 = Strongly Agree) to assess the applicability to middle-aged adults in the absence of clinical information. Criteria were accepted/rejected/revised dependent on the panel's level of agreement using the median response/interquartile range and additional comments.

RESULTS: Thirty-four criteria were rated in the first round of this exercise and consensus was achieved on 17 criteria which were accepted into the PROMPT criteria. Consensus was not reached on the remaining 17, and six criteria were removed following a review of the additional comments. The second round of this exercise focused on the remaining 11 criteria, some of which were revised following the first exercise. Five criteria were accepted from the second round, providing a final list of 22 criteria [gastro-intestinal system (n = 3), cardiovascular system (n = 4), respiratory system (n = 4), central nervous system (n = 6), infections (n = 1), endocrine system (n = 1), musculoskeletal system (n = 2), duplicates (n = 1)].

CONCLUSIONS: PROMPT is the first set of prescribing criteria developed for use in middle-aged adults. The utility of these criteria will be tested in future studies using prescribing datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de mestrado, Neurociências, Faculdade de Medicina, Universidade de Lisboa, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de mestrado, Neurociências, Faculdade de Medicina, Universidade de Lisboa, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis submitted in the fulfilment of the requirements for the Degree of Master in Electronic and Telecomunications Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vertebrates, signaling by retinoic acid (RA) is known to play an important role in embryonic development, as well as organ homeostasis in the adult. In organisms such as adult axolotls and newts, RA is also important for regeneration of the CNS, limb, tail, and many other organ systems. RA mediates many of its effects in development and regeneration through nuclear receptors, known as retinoic acid receptors (RARs) and retinoid X receptors (RXRs). This study provides evidence for an important role of the RA receptor, RAR~2, in ,( '. regeneration ofthe spinal cord and tail of the adult newt. It has previously been proposed that the ability of the nervous system to regenerate might depend on the presence or absence of this RAR~2 isoform. Here, I show for the very first time, that the regenerating spinal cord of the adult newt expresses this ~2 receptor isoform, and inhibition of retinoid signaling through this specific receptor with a selective antagonist inhibits tail and spinal cord regeneration. This provides the first evidence for a role of this receptor in this process. Another species capable of CNS ~~generation in the adult is the invertebrate, " Lymnaea stagnalis. Although RA has been detected in a small number of invertebrates (including Lymnaea), the existence and functional roles of the retinoid receptors in most invertebrate non-chordates, have not been previously studied. It has been widely believed, however, that invertebrate non-chordates only possess the RXR class of retinoid receptors, but not the RARs. In this study, a full-length RXR cDNA has been cloned, which was the first retinoid receptor to be discovered in Lymnaea. I then went on to clone the very first full-length RAR eDNA from any non-chordate, invertebrate species. The functional role of these receptors was examined, and it was shown that normal molluscan development was altered, to varying degrees, by the presence of various RXR and RAR agonists or antagonists. The resulting disruptions in embryogenesis ranged from eye and shell defects, to complete lysis of the early embryo. These studies strongly suggest an important role for both the RXR and RAR in non-chordate development. The molluscan RXR and RAR were also shown to be expressed in the adult, nonregenerating eNS, as well as in individual motor neurons regenerating in culture. More specifically, their expression displayed a non-nuclear distfibution, suggesting a possible non-genomic role for these 'nuclear' receptors. It was shown that immunoreactivity for the RXR was present in almost all regenerating growth cones, and (together with N. Farrar) it was shown that this RXR played a novel, non-genomic role in mediating growth cone turning toward retinoic acid. Immunoreactivity for the novel invertebrate RAR was also found in the regenerating growth cones, but future work will be required to determine its functional role in nerve cell regeneration. Taken together, these data provide evidence for the importance of these novel '. retinoid receptors in development and regeneration, particularly in the adult nervous system, and the conservation of their effects in mediating RA signaling from invertebrates to vertebrates.